25120 (Тектоносфера Земли и её закономерности), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Тектоносфера Земли и её закономерности", который расположен в категории "". Всё это находится в предмете "геология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "геология" в общих файлах.

Онлайн просмотр документа "25120"

Текст 2 страницы из документа "25120"

Субконтинентальная кора. Этот тип коры характерен для окраин материков и островных дуг. Такая кора имеет, в общем, материковое строение, но отличается прежде всего меньшей мощностью, чем типичная материковая кора. Наблюдается общее уменьшение мощности коры к периферии материка. Например, в центральных областях Северной Америки мощность коры преимущественно около 40 км, близ берега Атлантического океана она уменьшается до 30 км, а в прибрежной зоне Калифорнии она не более 18 км (рис. 85). В Евразии от центральных областей материка к его периферии средняя мощность коры уменьшается от 50 до 35 км. На островных дугах толщина коры 30—35 км. Соответственно, «корни гор» на окраинах материков и на островных дугах оказываются менее глубокими, чем в центре материка.

Вторым отличием субконтинентальной коры является отсутствие четко выраженного раздела Конрада: переход от гранито-гнейсового слоя к гранулито-базитовому в ней постепенен. Это последнее свойство субконтинентальной коры особенно ясно проявляется на островных дугах.

Указанное обычное разделение коры на 2—3 слоя — лишь очень приближенная схема. Сплошь и рядом количество слоев, различающихся скоростями сейсмических волн или разделяемых поверхностями, от которых сейсмические волны отражаются, оказывается значительно большим. При этом трудно бывает определить, какую именно поверхность раздела следует считать разделом Конрада.

Сопоставление данных, полученных сейсмическими методами в разных районах, приводит к выводу, что количество слоев в коре, их толщина и свойственные им сейсмические скорости изменяются на близких расстояниях. Земная кора оказывается разделенной на блоки небольшого размера (десятки и немногие сотни километров в поперечнике), имеющие разное внутреннее строение. Те же данные показывают, что границы между такими блоками часто выражены в форме вертикальных разломов, проходящих через всю кору.

Переход от материковой коры к океанической происходит обычно в пределах континентального склона там, где глубина моря или океана достигает приблизительно 2000 м. На этой глубине выклинивается гранито-гнейсовый слой. Что касается гранулито-базитового слоя, то скорости сейсмических волн в нем такие же, как в третьем слое океанической коры. Поэтому на старых схемах эти слои объединяли в один слой, предполагая, что «базальтовый» слой материковой коры продолжается непосредственно в базальтовую кору океанов. Сейчас мы знаем, что состав океанической коры и нижней материковой коры различен и, следовательно, ни один слой коры не протягивается насквозь с материка в океан: материковая кора полностью обрывается на континентальном склоне, замещаясь совершенно иной, океанической, корой. Впрочем, детали перехода одного типа коры в другой еще недостаточно изучены.

СТРОЕНИЕ И СОСТАВ ВЕРХНЕЙ МАНТИИ

Сразу под разделом Мохоровичича и на материках и в океанах сейсмические скорости возрастают до 8,0—8,2 км/с. Эти скорости являются типичными для кровли мантии. Однако существуют зоны, где кровля мантии устроена иначе. Такими зонами являются рифты как океанические, приуроченные к срединно-океаническим хребтам, так и материковые. Аномальность строения в этих случаях состоит в том, что между подошвой коры, мощность которой уменьшена до 20—30 км, и кровлей типичной мантии обнаруживается линза мощностью до 20 км, сложенная материалом с сейсмическими скоростями, промежуточными между коровыми и мантийными (7,4—7,8 км/с). Ее состав считается смесью корового и мантийного материала.

С глубиной сейсмические скорости возрастают, и в нескольких десятках километров ниже поверхности Мохоровичича можно встретить скорости до 9,0 км/с. В этой верхней части мантии обнаружены отражающие поверхности, но они имеют, по-видимому, локальное значение.

По наблюдениям над поверхностными сейсмическими волнами установлено, что на глубине, которая в океанах близка к 50 км, а на материках колеблется между 80 и 120 км, начинается слой пониженных сейсмических скоростей, где скорость распространения сейсмических волн приблизительно на 0,3 км/с ниже их скорости в вышележащем слое мантии. Снизу слой пониженных скоростей также ограничен средой е большими сейсмическими скоростями. Попавшая в слой пониженных сейсмических скоростей упругая волна, в соответствии с законами распространения волн, отражается как от вышележащих, так и от подстилающих слоев и распространяется преимущественно внутри этого слоя, как в канале. Такой канал называется волноводом. Поэтому и слой пониженных сейсмических скоростей называется сейсмическим волноводом.

Волновод играет исключительно большую роль в развитии тектоносферы и во всех эндогенных геологических процессах. Под океанами волновод распространяется в глубь до 300—400 км, а под материками его толщина колеблется в пределах 100—150 км. Ниже, в слое Голицына, сейсмические скорости значительно возрастают.

Установлены горизонтальные неоднородности в волноводе. Они явно связаны с характером эндогенных режимов. Волновод чрезвычайно слабо выражен, а местами, по-видимому, и совсем отсутствуют под наиболее стабильными областями коры — древними кристаллическими щитами. Там, где волновод под щитами присутствует, он начинается на глубине свыше 100 км (на Канадском щите 115 км) и заканчивается на глубине 200 км. При этом он сказывается на скорости распространения только поперечных волн и не влияет на скорость продольных. Под плитами платформ этот слой проявляется в своем нормальном виде: его кровля находится на глубине около 100 км, а мощность достигает 150 км. Но под областями современного орогенеза, такими, например, как Альпы, Кавказ или Тянь-Шань, тот же слой является более мощным: его кровля поднимается до глубины 80 км, он становится, соответственно, толще и влияние его на скорости распространения как поперечных, так и продольных волн ощутительнее. Еще сильнее проявлен слой пониженных скоростей под рифтами; здесь его кровля находится на глубине 50—60 км под поверхностью и он, возможно, вверху смыкается с линзой промежуточных скоростей, лежащей между корой и мантией. Наконец, в современных вулканических областях (например, на Курильских островах) есть признаки того, что слой с пониженными сейсмическими скоростями поднимается от волновода вплоть до подошвы земной коры, а толщина его превышает 200 км. На Курильских островах, по данным С. А. Федотова, в кровле мантии были установлены скорости продольных сейсмических волн, равные 7,3—7,8 км/с; они сохраняются до глубины 80 км. И только на гдубине 125 км отмечается скорость 8,1 км/с. Но в соседних районах Тихого океана и Охотского моря уже непосредственно под корой скорости превышают 8 км/с.

Интересные данные о волноводе были получены М. Берри и Л.Кноповым для западной части Средиземного моря. Под морем слой низких сейсмических скоростей залегает на глубине 50 км. К берегам он погружается до 100 км. Следовательно, под Средиземным морем верхняя мантия построена по океаническому типу.

Судить о составе верхней мантии можно по ряду как прямых, так и косвенных признаков.

На поверхности Земли огромный объем среди пород занимают базальты. Они толстым слоем покрывают все дно океана и широко распространены, в земной коре на материках. Не подлежит сомнению, что базальтовая магма образуется глубже коры — в мантии. Однако представить себе, что верхняя мантия состоит из базальта или его интрузивного аналога — габбро, невозможно, так как этому противоречат скорости сейсмических волн (которые в мантии слишком велики для габбро), плотность (которая тоже слишком: велика) и тепловой поток (в случае габбрового состава мантии он должен был быть значительно выше, чем наблюдаемый).

Часть этих противоречий может быть снята, если предположить, что верхняя мантия состоит из эклогита, имеющего химический состав базальта, но обладающего значительно большими, чем базальт, плотностью и скоростью распространения сейсмических волн. Однако затруднения с размером теплового потока остаются. Кроме того, это предположение опровергается прямым изучением состава пород, имеющих мантийное происхождение. Такие породы образуют ультраосновные интрузии как на материках, так: и в океанах, а также широко представлены в виде ксенолитов в кимберлитовых трубках и в базальтовых излияниях. Особенно интересны с этой точки зрения кимберлитовые трубки: судя по содержащимся в них алмазам и другим минералам, требующим для своего образования высокого давления, они поднимаются с глубины от 70 до 280 км и, следовательно, могут выносить с собой обломки глубоких слоев верхней мантии. Ксенолиты из трубок были специально изучены Б.Г.Лутцем, а также В. С. Соболевым с сотрудниками. Кимберлитовые трубки и базальтовые экструзии на материках содержат включения разного состава. Но этот состав оказывается одинаковым для Сибири, Африки, Австралии и Америки, что свидетельствует о том, что включения не случайны и что по ним можно судить о типичном составе пород в глубоких недрах. Естественно, что среди включений, кроме пород, мантийного происхождения, присутствуют и породы, захваченные из разных слоев земной коры. Так, среди них можно встретить ксенолиты осадочных пород, метаморфические породы гранулитовой фации и эклогитоподобные породы, происходящие из низов коры. Мантия здесь представлена ультраосновными и основными породами.

Изучение последних показывает, что под материками мантия чрезвычайно неоднородна. Среди мантийных ксенолитов выделяются гранатовые лерцолиты, гранатовые гарцбургиты, верлиты, дуниты, пироксениты, а также эклогиты (пироп-диопсидовые и пироп-диопсид-энстатитовые). Если говорить об основных типах пород, то все это разнообразие может быть сведено прежде всего к двум породам: гранатовым перидотитам и эклогитам. Кроме этих типичных глубинных пород, встречаются менее глубинные шпинелевые перидотиты и еще менее глубинные, так называемые альпинотипные ультраосновные породы того же состава, что породы офиолитовой формации в эвгеосинклиналях.

Б. Г. Лутц указывает, что сравнение химического состава этих пород между собой и с составом хондритов, который можно рассматривать в качестве исходного материала Земли, дает важные указания на характер процессов, происходящих в мантии. Хондриты относительно богаты щелочными, щелочноземельными, радиоактивными и редкоземельными элементами. Ближе всего по составу к ним оказываются наиболее глубинные гранатовые перидотиты. Шпинелевые перидотиты и особенно альпинотипные гипербазиты содержат значительно меньше этих элементов. Но земная кора материков, напротив, чрезвычайно обогащена не только кремнием, но и щелочными, щелочноземельными, радиоактивными и редкоземельными элементами. Однако по сравнению с мантийными породами в ней меньше магния, хрома, никеля и некоторых других элементов. Это позволяет видеть в материковой земной коре продукт дифференциации мантийного вещества, а в гипербазитах мантии, залегающих относительно неглубоко (т. е. в шпине левых и альпинотипных перидотитах), — остаток от этой дифференциации.

Породы, представляющие верхнюю мантию под океанами, найдены в обрывах рифтовых долин срединно-океанических хребтов. Это — также перидотиты, но гораздо более однообразного состава, чем ультраосновные породы материковой мантии. Они близки по составу к наиболее глубинным гранатовым перидотитам материковой мантии и, как и последние, богаты щелочными, щелочноземельными, радиоактивными и редкоземельными элементами. В то же время они образуют самые верхние слои мантии под океанами. Отсюда следует, что океаническая мантия значительно менее дифференцирована, чем материковая. Это подтверждается и подсчетами глубины дифференциации для отдельных элементов: максимально она равна 40 км для всех литофильных элементов.

Следует еще раз подчеркнуть наличие существенных различий между океаническими и альпинотипными гипербазитами. Первые по своему составу являются представителями слабо дифференцированного, почти первичного хондритового материала, тогда как вторые должны рассматриваться как остаток от далеко зашедшей дифференциации того же материала, дополнительные составные части которого выделились в кору.

Наблюдаемые в различных зонах разная глубина и толщина волновода, в свете новых данных, определяются разным тепловым режимом: там, где кровля волновода ближе к поверхности и где его мощность больше, температура в верхней мантии, очевидно, выше температуры тех зон, где волновод погружен глубже и имеет меньшую мощность.

Количество жидкости в волноводе по отношению к твердым кристаллам, судя по снижению сейсмических скоростей, может колебаться от 5 до 25%. В качестве средней цифры можно принять 15%. Следует предполагать, что жидкость образует пленки, окутывающие твердые кристаллы.

Такое представление о строении слоя пониженных сейсмических скоростей приводит к выводу, что тот же слой должен отличаться пониженными плотностью и вязкостью. Действительно, присутствие жидкости в количестве 15% должно вести к снижению плотности вещества волновода приблизительно на 0,1 г/см3. При этом плотность материала в кровле волновода, где скапливаются продукты частичного плавления, становится ниже плотности покрывающих волновод самых верхних слоев мантии. В кровле волновода создается обстановка инверсии плотностей, подобная той, которая возникает в коре в связи с процессами регионального метаморфизма или в связи с присутствием толщ соли среди более плотных осадочных пород.

Вязкость при наличии жидкости также должна значительно снизиться, что позволяет рассматривать слой частичного плавления как зону, в которой должны происходить основные перемещения материала при изменении нагрузки на поверхность Земли. Исходя из такого представления, делались попытки вычислить вязкость слоя частичного плавления. Для этого изучали реакцию тектоносферы на снятие ледовой нагрузки после таяния льда на Балтийском и Канадском щитах. Е. В. Артюшков получил для слоя частичного плавления вязкость, равную 1020 П, тогда как вышележащая твердая часть тектоносферы (самые верхние слои мантии и кора) имеет среднюю вязкость на три порядка выше.

Низкая вязкость слоя частичного плавления и подвижность его материала позволили назвать этот слой астеносферой, т. е. геосферой «без прочности». Астеносфера своей подвижностью противопоставлена твердой части тектоносферы, залегающей выше и охватывающей кору и надастеносферные слои верхней мантии. Эта твердая часть тектоносферы называется литосферой. Кроме того, Е. Н. Люстихом был предложен термин «субстрат» для обозначения самых верхних твердых слоев верхней мантии, лежащих сразу под разделом Мохоровичича.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее