24765 (Применение диатомита), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Применение диатомита", который расположен в категории "". Всё это находится в предмете "геология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "геология" в общих файлах.

Онлайн просмотр документа "24765"

Текст 2 страницы из документа "24765"

Погрешность измерения оптической плотности на КФК-2 составляет 0,5% (±0,005).



Рис. 2.1 Калибровочная кривая для определения концентрации Al3+ в исследуемых растворах.



Таблица 2.2.

Зависимость оптической плотности растворов сравнения от концентрации ионов Al3+

раствора

1

2

3

4

С Al3+, мг/см3

0

0,0036

0,0108

0,0216

D

0

0,045

0,125

0,182

Определение содержания железа и в исследуемых растворах

Сульфосалициловая кислота образует с солями железа окрашенные комплексные соединения, причём в слабокислой среде она реагирует только с ионами Fe3+ (красное окрашивание). Концентрация железа (III) в фильтра­тах определяется по интенсивности окрашивания, возникающего при прибав­лении к анализируемой пробе раствора этого красителя. Интенсивность окрашивания измеряется оптической плотностью D, которая в свою очередь определяется концентрацией Fe3+ в растворах. Для измерения оптической плотности используют фотоэлектроколориметр КФК-2.

Слабокислая реакция в исследуемой пробе создаётся с помощью разбавленных растворов соляной кислоты и аммиака.

Предварительно готовят и окрашивают рабочую шкалу растворов сравнения для построения калибровочной кривой, отражающей зависимость оптической плотности раствора от содержания в нём железа.

Стандартный раствор железа с СFe3+ 0,1 мг/см3, необходимый для приготовления образцовых растворов, готовят согласно методике определения содержания трёхвалентного железа сульфосалициловым методом [34, 96].

Приготовление стандартных растворов железа:

а) запасного: растворяют 0.8634 г железо-аммонийных квасцов
Fe(NH4) (SO4)2·12 H2O в мерной колбе вместимостью 1 л в небольшом количестве дистиллированной воды, добавляют 10 мл крепкой серной кислоты и доводят объём раствора до метки; 1 мл раствора содержит
0.1 мг Fe.

б) рабочего: 50 мл запасного стандартного раствора разбавляют до 1 л дистиллированной водой, каждый раз приготовляют свежий раствор; 1 мл раствора содержит 0.005 мг железа.

Приготовление шкалы стандартных растворов железа.

В мерные колбы емкостью 50 мл отмеривают от 0 до 20 мл рабочего стандартного раствора железа и доводят объемы дистиллированной водой до метки.

Таблица 2.3

Приготовление шкалы стандартных
растворов железа

раствора

1

2

3

4

5

Объём рабочего р-ра, мл

0

5

10

15

20

С Fe3+, мг/л

0

0,5

1,0

1,5

2,0

Реактивы:

  1. аммиак, разбавленный (2:3) раствор;

  2. кислота соляная, разбавленный (3:2) раствор;

  3. рабочий стандартный раствор железа с CFe3+ 0,005 мг/см3;

  4. сульфосалициловая кислота, 10 %-ный раствор;

Ход определения

В колбу емкостью 50 мл наливают 20 мл анализируемого раствора, затем прибавляют пипеткой 2 мл раствора сульфосалициловой кислоты и, в зависимости от рН фильтрата, раствор соляной кислоты или аммиака; затем содержимое колбы тщательно перемешивают. Спустя 10 мин оптическую плотность окрашенного раствора измеряют с помощью КФК-2 на длине волны =536—540 нм.

Приготовление и окрашивание, а затем и фотометрирование рабочей шкалы растворов сравнения производится по аналогичной схеме: 20см3 стандартного раствора + раствор сульфосалициловой кислоты и другие реактивы. Полученные значения D наносят на график против соответствующих концентраций железа в мг/л, и на основе этих данных строится калибровочная кривая, по которой определяют содержание трёхвалентного железа в фильтратах. Если значение оптической плотности исследуемого раствора выходит за пределы, обозначенные на графике, пробу следует разбавить и провести повторное фотометрирование.

Погрешность измерения оптической плотности на КФК-2 составляет 0,5% (±0,005).


Рис. 2.2 Калибровочная кривая для определения концентрации Fe3+ в исследуемых растворах.



Таблица 2.4

Зависимость оптической плотности растворов сравнения от концентрации ионов Fe3+

раствора

1

2

3

4

5

С Fe3+, мг/л

0

0,5

1,0

1,5

2,0

D

0

0,014

0,030

0,035

0,050

Определение значения рН исследуемых растворов

Во всех вышеперечисленных опытах вместе с определением концентраций ионов Al3+ и Fe3+ в исследуемых растворах изучалось влияние порошка диатомита на реакцию раствора. Проводилось измерение значений рН растворов извлечения и фильтратов потенциометрическим методом, и затем вычислялось ΔрН по формуле:

ΔрН=рНисх-рНф, где рНисх – значение рН раствора извлечения,

рНф – значение рН фильтрата.

Замеры рН проводились с использованием лабораторного рН-метра ЛПУ-01 с хлорсеребряным и стеклянным электродами соответственно в качестве электрода сравнения и измерительного электрода.

Нужное значение рН раствора извлечения в диапазоне от 1 до 13 устанавливалось путём прибавления к 1 М раствору хлористого калия разбавленных растворов соляной кислоты или аммиака.

Настройка рН-метра проводилась по буферным растворам с рН 1.68 (0,05 М раствор тетраоксалата калия), 6,86 (0,025 М раствор калия фосфорнокислого однозамещённого и 0,025 М раствор натрия фосфорнокислого двузамещённого) и 9,18 (0,01 М раствор натрия тетраборнокислого).

Погрешность измерения рН:

в диапазоне рН 2-14 – ±0,04

в диапазоне рН -2-14 – ±0,40

2.4 Результаты исследований и обсуждение

Валовый химический состав исследуемого диатомита

По данным рентгеноспектрального анализа диатомит Инзенского месторождения, послуживший материалом для наших исследований, имеет химический состав, приведённый в таблице 2.5.

Таблица 2.5

Химический состав диатомита Инзенского месторождения Ульяновской области

Содержание, в % на сухую породу.

Na2O

MgO

Al2O3

SiO2

P2O5

SO2

K2O

CaO

TiO2

Fe2O3

0,01

0,07

5,35

90,20

0,09

0,03

0,12

0,70

0,12

3,22

По сравнению с цифрами, приведёнными в литературе, эта партия характеризуется повышенным содержанием кремнезёма (90,2% против 88,15% по данным У. Г. Дистанова; см. таблицу 1.1). Содержание полуторных окислов – в пределах среднего.

Опираясь на данные о содержании глинистого материала в породе, приводимые У. Г. Дистановым и другими авторами [25, 27], можно считать эти цифры косвенным подтверждением высокого содержания опалового кремнезёма в породе.

На основе полученных данных было рассчитано, что в 100 г диатомита в среднем содержится 2,83 г Al и 1,127 г Fe.

Выход алюминия из диатомита в зависимости от значения рН раствора извлечения

А) В ходе серии экспериментов было установлено, что нативный диатомит становится источником алюминия только при рН раствора извлечения менее 5,72 (±0,04) (интервал значений рНисх 1 – 10), а с уменьшением значения рН выход алюминия в раствор возрастает.

В) Для диатомита, прокалённого при 850°С, появление Al3+ в растворе отмечалось при рН<4,8.

Данные, отражающие зависимость CAl3+ в фильтрате от рН раствора извлечения, приведены в таблицах 2.6 и 2.7 и отражены на графиках, представленных на рисунках 2.1 и 2.2.

Таблица 2.6

Зависимость выхода алюминия от значения рН раствора извлечения для нативного диатомита

рН исх

1,02

1,94

2,70

4,01

5,72

6,07

8,30

9,60

CAl3+, мг/см3

0,0175

0,0129

0,0033

0,0011

0,0000

0,0000

0,0000

0,0000



Рис. 2.1 Зависимость выхода алюминия от значения рН раствора извлечения для нативного диатомита.





Таблица 2.7

Зависимость выхода алюминия от рН раствора извлечения для диатомита, прокалённого при 850°С

рН исх

1,08

2,15

3,12

4,80

5,72

6,48

8,30

9,60

C
Al3+, мг/см3

0,0186

0,0109

0,0038

0,0000

0,0000

0,0000

0,0000

0,0000

Рис. 2.2 Зависимость выхода алюминия от значения рН раствора извлечения для диатомита, прокалённого при 850°С.





В породе Al2O3 находится в связанном состоянии в составе кристаллической решётки глинистых минералов – гидрослюды и монтмориллонита.

Многочисленные исследования механизма взаимодействия слоистых алюмосиликатов с протонами показывают, что многие из них практически невозможно получить в моноионной Н+-форме, так как они самопроизвольно и немедленно становятся насыщенными Al [36, 98], то есть в них он занимает обменные позиции и способен переходить в раствор.

Д. С. Орлов, Т. А. Соколова и др. объясняют этот факт разрушением кристаллической решётки минералов в ходе реакций протонирования (см. рис. 1.8.). При действии на кристаллиты кислых водных растворов (в природе или лаборатории) катионы оснований Mex+ вытесняются и замещаются на ионы H+. В первую очередь протоны реагируют с гидроксильными группами октаэдрического слоя, находящимися на её боковых сколах. Но, имея достаточно малый радиус, они сравнительно легко мигрируют внутрь крис­таллической решётки, а также могут взаимодействовать с ОН-группами, расположенными «на дне» гексагональных пустот тетраэдрической сетки, если глинистый минерал характеризуется подвижной решёткой. В гидрослю­де калий с трудом вытесняется из своих обменных позиций, связь между пакетами достаточно прочная, поэтому при слабо- и среднекислом рН раствора взаимодействие с протонами ограничено поверхностными слоями кристаллической решётки.

В результате таких реакций ион Al3+, занимавший центральную позицию в алюмогидроксильном октаэдре, превращается в ион Al(OH)2+ или Al(OH)2+. Структура октаэдра нарушается, и ионы алюминия приобретают способность к обмену. Благодаря избытку ионов H+ и Cl в растворах извлечения весь алюминий переходит в форму простого иона Al3+, и катионы K+ вытесняют его в раствор.

Лабораторные эксперименты и полевые исследования показали, что насыщение почвенного поглотительного комплекса обменным алюминием и развитие процесса подзолообразования связаны с разрушением алюмосили­катов даже при слабокислой реакции почвенного раствора [28, 140]. В ре­зультате истощения буферной ёмкости почв и снижения рН до величины менее 4,2 количество подвижного алюминия резко возрастает [4, 23], в том числе и за счёт вышеописанных процессов. Поскольку наши исследования показали значительный рост CAl3+ в фильтратах при 1<рНисх<4,01
(cм. Таблицу 2.6), то эти данные подтверждают предположение о том, что в сильнокислой почве алюмосиликатная составляющая диатомита может стать дополнительным источником обменного алюминия в почвенном растворе. При рН>5,72 не отмечалось его выщелачивания из породы, что также согласуется с литературными данными о поведении алюминия в почве.

При прокаливании диатомита происходит частичное разрушение алюмосиликатов и переход Al2O3 в неактивное состояние: он включается в состав силикатной плёнки на поверхности частиц, устойчивой к воздействию протонов [20, 45]. Поэтому выход алюминия из термоактивированного диатомита отмечался при меньшем, чем для нативного диатомита рН.

Выход железа из диатомита в зависимости от значения рН раствора извлечения

А) Выход железа из нативного диатомита также отмечался только при кислой реакции раствора извлечения (1<рНисх<5,72):

  • рНисх 3,32 – 5,72 – было зафиксировано появление ионов Fe3+ в фильтрате (при рН 4,50 их концентрация максимальна на данном интервале рН);

  • рНисх 3,32 – выхода железа из диатомита не отмечалось (CFe3+в фильтрате равна 0);

  • при рНисх <3,32 вновь начался выход железа из диатомита, с уменьшением значения рН он постоянно возрастал.

В) Порошок диатомита, прокалённого при 850°C, становится источником железа при меньших значениях рН раствора извлечения (<3,12). В более щелочной среде присутствие в фильтратах ионов Fe3+ не отмечалось.

Данные, отражающие зависимость CFe3+ в фильтрате от рН раствора извлечения, приведены в таблицах 2. 8 и 2.9 и отражены на графиках, представленных на рисунках 2.3 и 2.4.

Таблица 2.8

Зависимость выхода железа от значения рН раствора извлечения для нативного диатомита

рН исх

1,02

1,37

1,94

2,70

3,32

4,01

4,50

6,07

8,30

9,60

CFel3+, мг/л

11,07

3,56

0,79

0,40

0,00

0,59

0,79

0,00

0,00

0,00


Рис. 2.3 Зависимость выхода железа от значения рН раствора извлечения для нативного диатомита:





Таблица 2.9

Зависимость выхода железа от значения рН раствора извлечения для диатомита, прокалённого при 850°С

рН исх

1,08

2,15

3,12

4,80

5,72

6,48

8,30

9,60

C
Fel3+, мг/л

4,74

1,18

0,00

0,00

0,00

0,00

0,00

0,00

Рис. 2.4 Зависимость выхода железа от значения рН раствора извлечения для диатомита, прокалённого при 850°С.





В диатомите железо заключено в кристаллической решётке алюмосиликатов и частично присутствует в виде свободных окислов. Силикатное железо появляется в кислом растворе вследствие разрушения глинистых минералов по вышеописанному механизму. При замещении водородом обменных катионов протоны взаимодействуют с дефектными тетраэдрами, в которых Si4+ замещён на Fe3+, или октаэдрами c Fe3+ вместо Al3+. Связи Fe—O или Fe—OH протонируются, железо занимает обменные позиции и приобретает способность переходить в раствор. Но свободные окислы железа начинают растворяться при более высоком значении рНисх, так как разрушение ионных и ионно-ковалентных связей кристаллической решётки требует большего количества энергии.

Способность ионов Fe3+ гидролизоваться выше, чем у ионов Al3+, поэтому можно предположить, что при 3,32 <рН<5,72 на процесс выхода железа из нативного диатомита накладывался процесс образования Fe3+ гидроксокомплексов Fe(OH)2+, Fe(OH)2+, Fe(OH)°, который не полностью подавлялся присутствием ионов Сl‾ и Н+ в растворе извлечения. В таком виде железо не определяется сульфосалициловым методом. Этим можно объяснить «горб» на графике, представленном на рисунке 2.3.

Ульрихом [48, 709] было показано, что при рН<3,2 в почве начинается растворение минералов гидроокисей и окисей железа, сопровождающееся появлением ионов Fe3+ в почвенном растворе. По данным наших исследований, резкое повышение выщелачивания железа из диатомита отмечалось при рН<3,32 (от нулевого выхода при рН 3,32 до концентрации Fe3+ в фильтрате 11,07 мг/л при рН 1,02), что в общем соответствуют закономерностям перехода железа в подвижное состояние с понижением рН среды, подробно описанными Л. А. Воробьёвой [28, 315].

Оранжевый цвет термоактивированного диатомита объясняется переходом всего содержащегося в нём железа в форму оксида железа (III). Он отчасти включается в состав силикатной плёнки на поверхности частиц, поэтому в фильтратах при рНисх>3.12 не отмечается присутствие ионов Fe3+. Но в сильнокислой среде (рН<3) Fe2O3 хорошо растворим, и на концентрацию Fe3+ в растворе извлечения не влияют сопутствующие реакции образования гидроксокомплексов. Поэтому в данных условиях из диатомита, прокалённого при 850°С, также интенсивно выщелачивается железо.

Относительный выход алюминия и железа из диатомита.

На основе данных о валовом химическом составе и выходе алюминия и железа из диатомита в зависимости от рН раствора извлечения, были рассчитаны показатели относительного выхода этих элементов (в пересчёте на 100 г породы и в массовых процентах) для нативного диатомита и диатомита, прокалённого при 850°С. Результаты приведены в таблицах 2.10, 2.11, 2.12 и 2.13 и на графиках, представленных на рисунках 2.5, 2.6, 2.7 и 2.8.

Таблица 2.10

Относительный выход алюминия из нативного диатомита в зависимости от значения рН раствора извлечения

рН исх

1,02

1,94

2,70

4,01

5,72

6,07

8,30

9,60

CAl3+, мг/см3

0,0175

0,0129

0,0033

0,0011

0,0000

0,0000

0,0000

0,0000

Относительный выход Al,

мг/100 г породы

9,397

6,708

1,650

0,591

0,000

0,000

0,000

0,000

масс. %

0,332

0,237

0,058

0,021

0,000

0,000

0,000

0,000

Рис. 2.5 Относительный выход (в массовых процентах) алюминия из нативного диатомита в зависимости от значения рН раствора извлечения.







Таблица 2.11

Относительный выход алюминия из диатомита,
прокалённого при 850°С, в зависимости от значения рН раствора извлечения

рН исх

1,08

2,15

3,12

4,80

5,72

6,48

8,30

9,60

CAl3+, мг/см3

0,0186

0,0109

0,0038

0,0000

0,0000

0,0000

0,0000

0,0000

О
тносительный выход Al,

мг/100 г породы

10,416

5,504

1,930

0,000

0,000

0,000

0,000

0,000

масс. %

0,368

0,194

0,068

0,000

0,000

0,000

0,000

0,000

Рис. 2.6 Относительный выход (в массовых процентах) алюми
ния из диатомита, прокалённого при 850°С, в зависимости от значения рН раствора извлечения.





Таблица 2. 12

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее