24448 (Требования к геодезическому обоснованию вариометрической съёмки на примере Курской магнитной аномалии), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Требования к геодезическому обоснованию вариометрической съёмки на примере Курской магнитной аномалии", который расположен в категории "". Всё это находится в предмете "геодезия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "геодезия" в общих файлах.

Онлайн просмотр документа "24448"

Текст 2 страницы из документа "24448"

Измерения градиентов силы тяжести на подвижном основании (автомашине, самолёте) позволяют ускорить локальные, региональные и глобальные исследования гравитационного поля Земли. Градиентометр, не связанный с Землёй, измеряет компоненты тензора V градиентов силы притяжения.

V= grad b= (1.5.1)

(1.5.2)

Главное различие в теории измерений на неподвижном основании и на подвижной, то что при измерении на подвижном основании нужно перейти от топоцентрической системы координат к инерциальной системе. Фирма «Белл» (Bell Aerospace-Textron, Буффало, Нью-Йорк) разработала систему для градиентометрической съёмки GGSS, предназначенную для работы на автомашине или самолёте. Основными частями системы являются три ортогональных гравитационных градиентометра, установленные с наклоном в 35° на трехосной гироплатформе для непрерывной ориентации в топоцентрической системе координат, связанной с гравитационным полем. Каждый градиентометр содержит две пары акселерометров фирмы Белл (расстояние 0,1 м), установленных ортогонально по краю диска (диаметр 0,2 м); их измерительные оси ориентированы по касательной к диску (рис. 7). Ускорение пробной массы, укрепленной на маятниковом подвесе, измеряется двумя кольцевыми емкостными датчиками, расположенными по обе стороны от этой массы. Выходной сигнал датчиков усиливается и преобразуется в ток. Ток подается в катушку для возвращения пробной массы в нулевое положение.

Система фирмы Белл содержит также приёмоиндикатор спутниковой системы GPS, обеспечивающий в сочетании с акселерометрами и гироплатформой информацию о местоположении и ориентации, блок регистрации данных, компьютер и источник питания (рис. 9). Система с кондиционером предназначена для работы в автомобильном фургоне, который в свою очередь можно разместить в самолете (C-130) для измерений в воздухе.

1.6 Спутниковая градиентоментрия

В настоящее время разрабатываются гравитационные градиентометры, которые основаны на традиционных или сверхпроводящих устройствах и будут установлены на спутниках, планируемых на 1990-е гг. Спутники будут запущены на практически круговые полярные орбиты с высотами от 160 до 250 км. Полагают, что за 6 мес. работы средние значения аномалий силы тяжести (по трапециям 1° х 1° и 0,5° х 0,5°) при разрешении 100— 50 км будут получены с ошибкой ±20 — 50 мкм • с -2. Приведем примеры разработок, основанных на разных принципах..

Французская программа GRADlO (Национальное бюро по аэродинамическим исследованиям и Исследовательская группа по космической геодезии) предусматривает создание градиентометра на базе традиционной технологии. В этом приборе имеется несколько микроакселерометров, которые расположены симметрично относительно центра масс по углам многоугольника так, что можно определить полный гравитационный тензор. Трехосные электростатические акселерометры должны иметь разрешение 10 - 12 м • с - 2. При максимальных возмущающих ускорениях около 10 - 4 м • с - 2 (на высоте 200км) прибор должен иметь динамический измерительный диапазон 10 8; для непрерывного контроля и калибровки акселерометров предусмотрена бортовая калибровочная система.

Примером сверхпроводящего градиентометра является прибор Пайка, созданный в Университете штата Мэриленд, США. Основными элементами этой невращающейся системы служат сверхпроводящие акселерометры. Акселерометр содержит пробную массу на мягком подвесе, магнитный преобразователь и усилитель с низкими шумами (сверхпроводящее квантовое интерференционное устройство сквид — SQUID) в состоянии сверхпроводимости. Магнитное поле, создаваемое катушками преобразователя, модулируется при движении пробной массы, в сквиде происходит детектирование и усиление модулирующего сигнала, который затем преобразуется в выходное электрическое напряжение.

Сверхпроводящая схема позволяет непосредственно суммировать и вычитать сигналы акселерометров. Это в свою очередь дает возможность измерять компоненты тензора градиентов силы тяжести, а также линейные и угловые ускорения носителя, необходимые для вычисления поправок. В системах с продольным расположением акселерометров сигналы пропорциональны диагональным элементам Vii тензора и линейным (поступательным) ускорениям. Системы же с перекрестным расположением акселерометров дают недиагональные элементы и угловые (вращательные) ускорения (рис. 10).

2. ГРАВИМЕТРИЧЕСКАЯ РАЗВЕДКА НА КУРСКОЙ МАГНИТНОЙ АНОМАЛИИ

2.1 История освоения КМА

Впервые КМА обнаружил ещё в 1783 г. П.Б. Иноходцев. Эта аномалия самая большая в мире: напряжённость магнитного поля там иногда в 5 и более раз превышает нормальную. Но только через столетие началось настоящее изучение этой аномалии. Наибольшую работу по изучению Курской аномалии осуществил Э.Е. Лейст, работавший там около 30 лет с начала 90х годов до 1918 г. и измеривший весьма точно поле в 4500 пунктов. В последний год он жаловался, что ему мешали работать крестьяне, принимавшие его за землемера и заставлявшие его проводить делёж помещичьих земель. В 1918 г. Э.Е. Лейст уехал в Германию и увёз с собой все материалы по Курской аномалии. Он вскоре умер.

В 1919 г. по предложению В.И. Ленина была организованна особая комиссия под председательством П.П. Лазарева по исследованию Курских магнитных аномалий. В1919 г. П.П. Лазарев 12 раз собирал свою комиссию для обсуждения плана работ. Комиссия прежде всего затребовала у наследников умершего проф. Э.Е. Лейста его материалы по магнитной съёмке, но они запросили за них 1 миллион долларов. При изучении этого материала выяснилось, что хотя проф. Лейст и весьма точно измерил компоненты магнитного поля, но координаты пунктов были определены очень неточно, а магнитное поле менялось так сильно в зависимости от положения точки, что наблюдения Лейста в значительной мере потеряли свою ценность. Важно было иметь не столь точные значения поля, но более точные положения точек.

Было решено делать съёмку. Изготовлять много магнитометров было длительным делом, и А.Н. Крылов, который в начале своей деятельности занимался теорией морских магнитных компасов по военно-морскому ведомству, предложил использовать эти компасы, позволяющие определить все компоненты магнитного поля. Предложение А.Н. Крылова приняли и за два года съёмки была в основном сделана и лучше, чем у Лейста. К проведению её были привлечены студенты Московского университета.

Кроме магнитных, геологических и буровых работ комиссия решила впервые широко использовать гравиметрический метод разведки. Для использования маятникового метода был приглашён А.А. Михайлов, а для работы с гравитационным вариометром Этвеша – П.М. Никифоров.

Первая попытка найти гравитационную аномалию в Курской области была сделана Иоганном Фридрихом фон Парротом в первой четверти XIX в. Метод Паррота был принципиально прост – сравнивалось изменение атмосферного давления, измеренное на соседних точках двумя приборами: анероидом и ртутным барометром. Паррот получил разницу в 0,17 мм ртутного столба, что соответствовало огромной аномалии, примерно на 2 порядка большей, чем впоследствии выяснилось из настоящих гравитационных наблюдений.

Ранее маятниковые наблюдения силы тяжести проводились только в теплоизолированных помещениях на солидных каменных столбах и длительное время. На КМА надо было измерять силу тяжести в поле на профилях протяжённостью всего 3-5 км, где не было зданий. А.А. предложил метод наблюдений в выкопанных траншеях глубиной 1,5 м и длинной в 4 м, закрытых изолирующей двойной фанерной палаткой (рис. 11).

В таких траншеях в одном конце вкапывался тяжёлый медный колокол, заменявший цементный столб для установки маятникового прибора. В другом конце размещался наблюдатель с приёмным устройством и контактным хронометром. Поправки времени для этих часов определялись уже по ритмическим радиосигналам, только недавно ставшим входить в обиход астрономических наблюдений. В результате разработанной методики наблюдений в поле точность определения была около 1,5 мГал (маятник Штюкрата), что позволило уверенно определить аномалии в 10 мГал на профилях длиною 4-6 км. 1921 г. – в районе Щигров 1922 г. – в районе Салтыковки 1923 г. – в районе Щигров 1924 г. – в районе Белгородского уезда 1925 г. – в районе Тима

Основным наблюдателем был сам А.А. Кроме приёма сигналов времени из Москвы и Науэна А.А. Михайлов определял также поправки часов астрономически.

Он же проводил геодезические определения координат пунктов наблюдений путём привязки к ближайшим геодезическим знакам и астрономические определения координат с помощью универсальных инструментов. Благодаря исключительному мастерству А.А. как наблюдателя ему удалось даже определить уклонение отвеса, вызываемые тяжёлыми магнитными массами, хотя эти уклонения были очень малы – порядка 1 секунды дуги. В 1926 г. работы по КМА были признаны полностью нерентабельными и прекратились. Однако в 1930 г. опять возобновились, и особенно широко после войны. Запасы железных руд в КМА оцениваются сейчас в 45 млрд. тонн, в том числе богатых – 26 млрд. тонн. В 1972 г. было добыто 20 млн. тонн, а сейчас в связи с переходом к открытому методу разработки – ещё значительно больше. Глубина залегания руд местами всего в 60 – 150 м. от поверхности и позволяет разрабатывать залежи открытым способом. [4] 2.2 Гравиразведочные работы на железорудных месторождениях

Эти работы выполняют для решения следующих задач: 1) изучение геологического строения районов месторождений. 2) поиски комплексов пород, с которыми связаны месторождения железных руд. 3) поиски залежей богатых руд среди вмещающих пород и их предварительное исследование. Кроме того, в последнее время получают развитие гравиметрические работы в подземных выработках. В области Курской магнитной аномалии развиты породы двух комплексов: 1) сильно метаморфизованные и сильно дислоцированные породы докембрийского основания с высокой плотностью от 2,6 до 3,8 г/см3 ; 2) осадочные породы палеозойского, мезозойского и кай­нозойского возраста с плотностью от 1,6 до 2.4 г/см3. Осадочные породы залегают на докембрийских трансгрессивно и почти гори­зонтально. Мощность осадочного комплекса изменяется от 35 м в центральной части бассейна до 550 м в южной.

Докембрийский комплекс пород разделяется на: а) нижний отдел, представленный биотитовыми гнейсами с плотностью 2,7 г/см3, слюдяными и хлоритовыми сланцами (2,6), б) средний отдел — желе­зистые кварциты с плотностью (3,3), амфиболовые (3,1), хлоритовые и биотитовые сланцы (2,68); в) верхний отдел — биотитовые (2,68) и известковистые сланцы, известняки (2,65) и доломиты (2,05). С железистыми кварцитами с содержанием железа 30—35% и плот­ностью 3,2—3.7 г/см3 среднего отдела связаны богатые железные руды с содержанием железа 50—60% и плотностью 3,3—1,0 г/см3. Богатые руды приурочены к зоне древнего выветривания железистых кварцитов и представлены мартитовыми и сидерит-мартитовыми рудами. Они залегают на железистых кварцитах в виде горизонталь­ных пластообразных и линзовидных залежей с вертикальной мощ­ностью от 40 до 350 м.

На Курской магнитной аномалии проводятся комплексные геофи­зические работы (магниторазведочные, гравиразведочные, сейсморазведочные, электроразведочные). На рис. 13 приведен профиль через Лебединское месторождение в Старооскольском районе и геолого-гравиметрический разрез. По кривой силы тяжести WZ в средней части профиля выделяется свита плотных пород. Падение близко к вертикальному. По кривой градиента силы тяжести удается расчленить эту свиту на отдельные пласты с плотностью от 2,7 до 3,9 г/см3. Таких пластов выделено 23.

При расчленении свиты был применен способ интерпретации. Теоретическая кривая WXZT в основном совпадает с наблюденной кривой градиента.

В левой части разреза по профилю на участке 1,4 км выделяется глубокий минимум градиента силы тяжести до 200 этвеш, а на участке 2,5 км — максимум. В этом интервале выделена первая мощ­ная пачка пластов с повышенной плотностью — от 3,2 до 3,9 г/см3. Наиболее плотные пласты выделены на участке 1,4—1,6 км. В ин­тервале от 2 до 3 км кривая градиента имеет сложный вид, и здесь выделено три пласта с плотностью 3,7—3,9 г/см3. Бурение скважины на гравитационном репере 2,24 км над первым из этих трех пластов выявило залежь богатых железных руд. Залежь выделена по гравиметрическим данным в трех местах, там, где она залегает на головах железистых кварцитов. Кривая градиента силы тяжести имеет минимум на участке пункта 2,9 км и максимум на участке пункта 3,5 км. Здесь при интерпретации было выделено два пласта с повышенной плотностью до 3,9 г/см3. Скважина, заданная на гравитационном репере 3,2 км над пластом с плотностью 3,7—3,9 г/см3, вскрыла вторую залежь богатых железных руд с максимальной мощностью 49 м. Далее по профилю была выделена еще одна зона, в которой развиты породы с повышенной плотностью (3,7—3,9 г/см3 ) на участке 4 км. Над залежами богатых руд наблюдаются магнитные аномалии слабой интенсивности, поглощение упругих колебаний и осложнение волновой картины при сейсморазведке. Таким образом, гравитационный метод в таких условиях может с успехом решать задачи детального геологического картирования пород кристаллического фундамента под мощной толщей рыхлых отложений и задачи поисков залежей богатых железных руд (в комплексе с другими геофизическими методами).

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее