12623 (Химическая и радиационная стойкость керамики), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Химическая и радиационная стойкость керамики", который расположен в категории "". Всё это находится в предмете "биология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "биология и химия" в общих файлах.

Онлайн просмотр документа "12623"

Текст 2 страницы из документа "12623"

Чем короче длина волны, т. е. чем больше энергия кванта излучения Е (E=hf, где h — постоянная Планка, f — частота излучения), тем больше ее воздействие на материалы.

Наиболее сильно на материалы влияет ионизирующее излучение высокой энергии, которое, проходя через вещество, взаимодействует с электронными оболочками и ядрами атомов, вызывает нарушение структуры и другие повреждения материалов.

Характер повреждения при облучении зависит от дозы радиации и свойств материалов, в частности от их радиационной чувствительности, которую можно оценить величиной изменения какого-либо свойства в зависимости от мощности поглощенной дозы.

Поскольку почти все свойства керамических материалов зависят от их структуры, то изменения последней могут служить одним из важных показателей радиационной стойкости керамики при облучении.

Радиационная стойкость неорганических веществ, в том числе в составе керамики, зависит от их химического состава, типа химической связи, кристаллической структуры, а в изделиях — также от плотности упаковки.

Энергия излучения, как и другие виды энергии, например тепловая, подводится из окружающей среды к керамическому материалу, который можно рассматривать в качестве открытой системы, т. е. системы, обменивающейся с окружающей средой энергией, веществом и информацией. В открытых системах образуются структуры, способствующие рассеиванию (диссипации) энергии в окружающую среду (диссипативные структуры). Часть энергии, которую система не может рассеять в окружающую среду (например, не успевает это сделать), она вынуждена аккумулировать внутри себя на образование различных структур, часто являющихся дефектами. Чем больше скорость подведения энергии из окружающей среды и меньше способность системы к ее рассеиванию, тем большую часть энергии она вынуждена аккумулировать.

Аккумулирование энергии при воздействии ионизирующего излучения происходит в основном на атомарном уровне в первую очередь на образование электронных дефектов, точечных дефектов кристаллической решетки - вакансий (преимущественно по Френкелю, а для поверхностных атомов - по Шоттки) и их ассоциатов. Увеличение энергии кванта и мощности потока приводят к возникновению более крупных и соответственно энергоемких дефектов. Возможность системы рассеивать подводимую энергию зависит от типа химической связи слагающих ее соединений. Высокосимметричные кристаллы с высокой долей ионности химических связей имеют много направлений для рассеивания подводимой энергии. В них аккумулируется меньше энергии и соответственно возникает меньше дефектов. В отличие от них кристаллы с высокой долей ковалентности химической связи, обладающей высокой направленностью, могут рассеивать энергию по меньшему числу направлений. Эти структуры вынуждены аккумулировать значительно большую часть подводимой энергии на образование дефектов.

Наиболее стойкими благодаря симметричности электростатических связей между частицами являются ионные структуры. При этом с уменьшением степени ионности химической связи, например, в ряду Ве-0, А1-О, Zr-0, Si-0 падает устойчивость к воздействию нейтронов.

Установлено, что в результате фазовых переходов под действием облучения образуются более симметричные структуры. Переход в фазу с более высокой симметрией повышает возможности кристалла рассеивать подводимую из окружающей среды энергию по различным направлениям. Увеличение параметра элементарной ячейки при облучении указывает на аккумулирование некоторой части энергии в виде вакансий. Полиморфные переходы при подведении тепловой энергии происходят при более высокой температуре, чем при облучении, и более высокая подвижность атомов препятствует аккумулированию энергии в виде вакансий. Увеличения параметров элементарной ячейки при этом не наблюдается.

Установлено также, что у материалов типа силикатов при облучении мощным потоком нейтронов уменьшается степень их аморфизации в соответствии с их строением в ряду: островные, цепочечные, листовые, каркасные. Отмечено также, что изменение плотности облученных минералов одинакового строения пропорционально содержанию в них SiО2. Поэтому оксиды более устойчивы, чем соответствующие силикаты. Это связано с высокой долей ковалентности связи -Si-0-. Для аморфизации необходимо разрушить химические связи в кристалле. При относительно небольших мощностях потока в первую очередь будут разрываться более слабые химические связи (где тонко, там и рвется), т. е. в островных силикатах. В силикатах по сравнению с оксидами имеются связи —Si—0— и соответственно выше вероятность аккумулирования энергии в виде точечных дефектов, вплоть до потери устойчивости кристаллической решетки и аморфизации.

Керамические материалы в значительной мере многофазны. При воздействии облучения отдельные фазы ведут себя по-разному, при этом изменения в соединениях различны при их нахождении в керамике или в свободном состоянии. В многофазных материалах соответствующие фазы могут способствовать или препятствовать рассеиванию (или аккумулированию) подводимой энергии.

Увеличение мощности дозы (интенсивности потока излучения) заставляет систему искать оптимальное сочетание между рассеиванием и аккумулированием подводимой энергии.

Диэлектрические материалы, обладающие в обычных условиях ничтожно малой электрической проводимостью, весьма чувствительны к воздействию радиации. Влияние проникающего излучения (γ-квантов, рентгеновского излучения, электронов) на вещество определяется главным образом процессами взаимодействия между первичным квантом или электроном и электронами, находящимися в оболочках атомов облучаемого материала.

В результате ионизации атомов и молекул в веществе образуются дополнительные электроны и положительные ионы. Во внешнем электрическом поле образованная пара зарядов участвует в процессах электрической проводимости, если составляющие ее положительный ион и электрон не рекомбинируют друг с другом.

Установлено, что ионизационная проводимость диэлектрических материалов связана с мощностью дозы излучения. Это связано с образованием электронных дефектов и переходом электронов из валентной зоны в зону проводимости. При увеличении энергии квантов и мощности потока появляются точечные дефекты - вакансии и междоузельные атомы.

Нагревание в процессе облучения способствует не только дополнительному подводу энергии к материалу, но и облегчает ее рассеивание за счет повышения подвижности атомов. При некоторых условиях наступает динамическое равновесие.

Зависимость удельной проводимости корундовой керамики от температуры для необлученного (1) и облученного при дозе Р=10' р/с (2) образцов.

При дальнейшем повышении температуры значение проводимости приближается к исходному.

Изменение прочностных свойств керамических материалов после облучения потоком 2*1020 нейтр/см2 сравнительно невелико. Это связано с тем, что при таком потоке образуются преимущественно точечные дефекты, которые мало влияют на прочность. С увеличением дозы до 1,09*1021 нейтр/см2 прочность снижается, что указывает на появление более крупных дефектов, выступающих в роли концентратора напряжений.

Способность к аккумулированию потока энергии ионизирующего излучения зависит от ориентации к нему кристаллов керамики, наличия примесей, стеклофазы, пор и т. д. В результате в керамике возникают неравномерные внутренние механические напряжения. Этим объясняют некоторые сдвиги максимумов и минимумов на кривой зависимости электрической проводимости от температуры.

Известно, что стеклофаза обладает более высокой энергией Гиббса, чем кристаллическая фаза. При не слишком большой энергии квантов и мощности потока излучения ее подвод к стеклофазе позволяет системе рассеивать ее часть на создание более упорядоченных диссипативных структур, вплоть до образования зародышей кристаллической фазы. При этом стеклофаза сжимается, а ее плотность возрастает. По сравнению со стеклофазой кристаллическая фаза уже является упорядоченной. В таких условиях она вынуждена в большей степени аккумулировать энергию в виде точечных дефектов, в первую очередь вакансий, которые уменьшают плотность материала и приводят к увеличению его объема. Величина локальных объемных изменений в материале будет зависеть от вида кристаллической и стеклообразных фаз и их содержания. В керамике формируются локальные области растяжения и сжатия. В результате может возникнуть такое соотношение сжимающих и растягивающих напряжений, которое приводит даже к увеличению прочности керамики в целом.

2. Тугоплавкие бескислородные соединения.

К неоксидным тугоплавким соединениям относят бескислородные соединения металлов с такими элементами, как азот — нитриды; углерод — карбиды; бор - бориды; кремний - силициды; сера -сульфиды; фосфор — фосфиды и с другими элементами, а также соединения с указанными выше элементами и кислородом — с азотом и кислородом — оксинитриды, с углеродом и кислородом — оксикарбиды, с кремнием, алюминием, кислородом и азотом - сиалоны.

Многие из этих соединений обладают высокими температурами плавления, прочностью химических связей, теплопроводностью, электрической проводимостью или диэлектрическими свойствами, химической стойкостью. Это делает их перспективными для применения в качестве конструкционной керамики — деталей двигателей внутреннего сгорания и газотурбинных двигателей, режущих инструментов, керамических подшипников. Керамику с электрической проводимостью используют для изготовления нагревательных элементов. Высокая прочность химической связи позволяет использовать эти материалы в качестве легкой брони, поскольку при очень быстром механическом взаимодействии пули с броней большая часть кинетической энергии тратится на разрыв химических связей броневого материала.

Сочетание высоких диэлектрических свойств с высокой теплопроводностью позволяет успешно применять некоторые соединения в электронной технике.

Отличительной особенностью неоксидных соединений является значительно большая по сравнению с оксидами доля ковалентности и прочность химических связей. Кристаллы и поликристаллические тела многих из этих соединений обладают высокой твердостью и прочностью, что затрудняет механическую обработку изделий. Весьма высокая электрическая проводимость многих видов неоксидной керамики позволяет эффективно применять электроискровые (электроэрозионные) методы обработки, для которых твердость материала не имеет решающего значения.

Разрыв прочных химических связей в кристаллах, происходящий при их плавлении, требует больших энергетических затрат, поэтому эти соединения имеют высокие температуры плавления.

Высокодисперсные порошки из неоксидных соединений получают различными методами: твердофазным, газофазным, СВС, плазмохимическим.

Формование изделий из неоксидной керамики осуществляют полусухим прессованием, пластическим прессованием и литьем.

Для спекания неоксидной керамики обычно используют реакционное спекание или специальные добавки, которые образуют жидкую фазу и обеспечивают жидкофазное спекание.

Существенным недостатком неоксидных соединений является их способность к окислению кислородом воздуха. Это может приводить к потере изделием своих эксплуатационных свойств. Устойчивость к окислению у соединений, не содержащих кислорода, как правило, ниже, чем у соединений, содержащих кислород. Так, нитрид кремния окисляется быстрее, чем оксинитрид. Однако скорость окисления в первую очередь зависит от свойств образующейся оксидной пленки. Образование сплошной оксидной пленки резко снижает скорость процесса. Для предохранения от окисления на поверхности изделий часто специально создают защитное оксидное покрытие. Проблемой является сохранение сплошности этого покрытия при термоциклировании из-за различия в ТКЛР с основной фазой керамики.

1. Керамика из карбидов.

Карбиды обладают наиболее высокими среди бескислородных соединений температурами плавления, высокой прочностью и твердостью. Это позволяет использовать их для изготовления высокоогнеупорной, износостойкой, высокопрочной керамики, например форсунок, фильер для волочения проволоки, режущих инструментов, подшипников, деталей двигателей, в авиационной и ракетно-космической технике.

Большинство карбидов обладает высокой теплопроводностью и является проводниками или полупроводниками. Их можно применять в электронике, электротехнике, в частности для получения электронагревательных элементов. Электрическая проводимость карбидов позволяет использовать для их обработки электроэрозионные методы. По сравнению с другими бескислородными соединениями карбиды, как правило, более устойчивы к окислению, и соответственно их можно использовать в окислительной среде при более высоких температурах.

WC и TiC широко используют в качестве основной фазы, добавок, покрытий в режущих инструментах. TiC и NbC применяют для замены дефицитных добавок ТаС в поликарбидных режущих инструментах.

Карбид бора В4С имеет плотность 2,52 г/см3. Керамику с относительной плотностью 93—98% получают при 1700—2200°С без приложения давления и методом горячего прессования при использовании в качестве добавок соединений алюминия и кремния. Керамика имеет прочность при изгибе 330-680 МПа, твердость по Виккерсу 22 ГПа. Благодаря высокой твердости, прочности и легкости В4С используют для изготовления легкой керамической брони, компонентов композиционных инструментов и других керамических композиционных материалов.

Наибольшее применение находит карбид кремния, иногда называемый карборундом, который существует в виде двух основных модификаций: β-SiC - кубический со структурой сфалерита и α-SiC - гексагональный. Наличие в керамике анизотропных по ТКЛР кристаллов α-SiC приводит к тому, что прочность материала с ростом температуры возрастает и имеет максимум. Для самосвязанного SiC он находится в области 1200°С.

Алмазоподобную структуру с высокой прочностью химической связи кристаллам обеспечивает sp3-гибридизация в SiC..

Карбид кремния обладает высокой химической стойкостью. При комнатной температуре не взаимодействует с кислотами и растворами щелочей. При 200-250°С взаимодействует с НзР04. SiC взаимодействует с фтором, а выше 600°С — с хлором. Реагирует с расплавами гидроксидов, карбонатов, сульфидов щелочных металлов. В окислительной атмосфере керамика может служить до 1500—1650°С. Образующаяся на поверхности пленка SiO2 замедляет дальнейшее окисление. Выше 1300°С пленка переходит в кристобалит. Различия в ТКЛР SiO2 и SiC, а также объемные изменения при полиморфных переходах кристобалита приводят к нарушению сплошности пленки при термоциклировании и потере ее защитных средств. На воздухе керамику из SiC можно кратковременно использовать до 1650°С. Окислительное действие окружающей среды является причиной медленного роста трещин в материале, находящемся под действием механической нагрузки.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее