11391 (Відкриття та характеристика генетичного коду)

2016-07-31СтудИзба

Описание файла

Документ из архива "Відкриття та характеристика генетичного коду", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "биология" в общих файлах.

Онлайн просмотр документа "11391"

Текст из документа "11391"

Відкриття та характеристика генетичного коду

Зміст

Вступ

Поняття генетичного коду

Відкриття генетичного коду

Властивості генетичного коду

Варіанти генетичного коду

Генетичний код як система

Висновок

Література


Вступ

Найважливішим досягненням біології XX ст. стало з'ясування генетичного коду - встановлення відповідності між послідовністю нуклеотидів молекули ДНК та амінокислотами молекули білка. Нині генетичний код з'ясовано повністю.

Книга життя кожної людини зшита з різних сторінок, в них вписаний генетичний код. Іншими словами, геном людини - це унікальна система запису інформації. Вона міститься переважно в молекулах ДНК, які знаходяться в хромосомах кожної клітини людини. Кількість хромосом - величина постійна. І якщо вона раптом міняється, патології неминучі. Генетичний код зберігає "правильну" інформацію - завдяки цьому кожна клітина може жити, розмножуватися і формувати органи. Схема проста - так розвивається будь-який організм від простого одноклітинного до самого Вінця Природи. Система запису генетичного коду забезпечує відтворення. Код передається від клітини до клітини, і він універсальний для усього сущого на Землі.

Отже розглянемо докладніше генетичний код.


Поняття генетичного коду

Генетичний код, система зашифровуваної спадкової інформації в молекулах нуклеїнових кислот, що реалізовується у тварин, рослин, бактерій і вірусів у вигляді послідовності нуклеотидів.

Генетичний код - набір правил розташування нуклеотидів в молекулах нуклеїнових кислот (ДНК і РНК), що надає всім живим організмам можливість кодування амінокислотної послідовності білків за допомогою послідовності нуклеотидів.

Генетичний код - це система триплетів нуклеотидів, які визначають амінокислотну послідовність поліпептидного ланцюга.

У ДНК використовується чотири нуклеотиди - аденін (А), гуанін (G), цитозин (С) і тімін (T), які в україномовній літературі також часто позначаються буквами А, Г, Ц і Т відповідно. Ці букви складають "алфавіт" генетичного коду. У РНК використовуються ті ж нуклеотиди, за винятком тіміну, який замінений схожим нуклеотидом, - урацилом, який позначається буквою U (або У в україномовній літературі). У молекулах ДНК і РНК нуклеотиди складають ланцюжки і, таким чином, інформація закодована у вигляді послідовності генетичних "букв".

Для синтезу білків в природі використовуються 20 різних амінокислот. Кожен білок є ланцюжком або декількома ланцюжками амінокислот в строго певній послідовності. Ця послідовність називається первинною структурою білку, що також у значній мірі визначає визначає всю будову білку, а отже і його біологічні властивості. Набір амінокислот також універсальний для переважної більшості живих організмів.

Експресія генів або реалізація генетичної інформації у живих клітинах (зокрема синтез білку, що кодується геном) здійснюється за допомогою двох основних матричних процесів: транскрипції (тобто синтезу мРНК на матриці ДНК) і трансляції генетичного коду в амінокислотну послідовність (синтез поліпептидного ланцюжка на матриці мРНК). Для кодування 20 амінокислот, а також стоп-сигналу, що означає кінець білкової послідовності, достатньо трьох послідовних нуклеотидів. Набір з трьох нуклеотидів називається кодоном.

Генетичний код, загальний для більшості про - і еукаріот. У таблиці приведено усі 64 кодони і вказані відповідні амінокислоти. Порядок підстав - від 5' до 3' кінця мРНК.

2-а основа

U

C

A

G

1-а основа

U

UUU (Phe/F) Фенілаланін

UUC (Phe/F) Фенілаланін

UUA (Leu/L) Лейцин

UUG (Leu/L) Лейцин

UCU (Ser/S) Серин

UCC (Ser/S) Серин

UCA (Ser/S) Серин

UCG (Ser/S) Серин

UAU (Tyr/Y) Тирозін

UAC (Tyr/Y) Тирозін

UAA Ochre (Стоп)

UAG Amber (Стоп)

UGU (Cys/C) Цистеїн

UGC (Cys/C) Цистеїн

UGA Opal (Стоп)

UGG (Trp/W) Триптофан

C

CUU (Leu/L) Лейцин

CUC (Leu/L) Лейцин

CUA (Leu/L) Лейцин

CUG (Leu/L) Лейцин

CCU (Pro/P) Пролін

CCC (Pro/P) Пролін

CCA (Pro/P) Пролін

CCG (Pro/P) Пролін

CAU (His/H) Гістидін

CAC (His/H) Гістидін

CAA (Gln/Q) Глутамін

CAG (Gln/Q) Глутамін

CGU (Arg/R) Аргинін

CGC (Arg/R) Аргинін

CGA (Arg/R) Аргинін

CGG (Arg/R) Аргинін

A

AUU (Ile/I) Ізолейцин

AUC (Ile/I) Ізолейцин

AUA (Ile/I) Ізолейцин

AUG (Met/M) Метионін, Start [2]

ACU (Thr/T) Треонін

ACC (Thr/T) Треонін

ACA (Thr/T) Треонін

ACG (Thr/T) Треонін

AAU (Asn/N) Аспарагін

AAC (Asn/N) Аспарагін

AAA (Lys/K) Лізин

AAG (Lys/K) Лізин

AGU (Ser/S) Серин

AGC (Ser/S) Серин

AGA (Arg/R) Аргинін

AGG (Arg/R) Аргинін

G

GUU (Val/V) Валін

GUC (Val/V) Валін

GUA (Val/V) Валін

GUG (Val/V) Валін

GCU (Ala/A) Аланін

GCC (Ala/A) Аланін

GCA (Ala/A) Аланін

GCG (Ala/A) Аланін

GAU (Asp/D) Аспарагінова кислота

GAC (Asp/D) Аспарагінова кислота

GAA (Glu/E) Глутамінова кислота

GAG (Glu/E) Глутамінова кислота

GGU (Gly/G) Гліцин

GGC (Gly/G) Гліцин

GGA (Gly/G) Гліцин

GGG (Gly/G) Гліцин

Відкриття генетичного коду

Сьогодні ні для кого не секрет, що програма життєдіяльності усіх живих організмів записана на молекулі ДНК. Найпростіше представити молекулу ДНК у вигляді довгих сходів. Вертикальні стійки цих сходів складаються з молекул цукру, кисню і фосфору. Уся важлива робоча інформація в молекулі записана на перекладинах сходів - вони складаються з двох молекул, кожна з яких кріпиться до однієї з вертикальних стійок. Ці молекули - азотисті основи - називаються аденин, гуанин, тимін і цитозин, але зазвичай їх означають просто буквами А, Г, Т і Ц. Форма цих молекул дозволяє їм утворювати зв'язки - закінчені сходинки - лише певного типу. Це зв'язки між основами А і Т і між основами Г і Ц (утворену таким чином пару називають "парою основ"). Інших типів зв'язку в молекулі ДНК бути не може.

Спускаючись по сходинках вздовж одного ланцюга молекули ДНК, ви отримаєте послідовність основ. Саме це повідомлення у вигляді послідовності основ і визначає потік хімічних реакцій в клітині і, отже, особливості організму, що має цю ДНК. Згідно з центральною догмою молекулярної біології, на молекулі ДНК закодована інформація про білок, які, у свою чергу, виступаючи в ролі ферментів (див. Каталізатори і ферменти), регулюють усі хімічні реакції в живих організмах.

Строга відповідність між послідовністю пар основ в молекулі ДНК і послідовністю амінокислот, що становлять білкові ферменти, називається генетичним кодом. Генетичний код був розшифрований незабаром після відкриття двоспіральної структури ДНК. Було відомо, що нещодавно відкрита молекула інформаційної, або матричною РНК (иРНК, або мРНК), несе інформацію, записану на ДНК. Біохіміки Маршалл Уоррен Ниренберг (Marshall W. Nirenberg) і Дж. Генріх Маттеи (J. Heinrich Matthaei) з Національного інституту охорони здоров'я в містечку Бетезда під Вашингтоном, округ Колумбію, поставили перші експерименти, які привели до розгадки генетичного коду.

Вони почали з того, що синтезували штучні молекули І-РНК, що складалися тільки з азотистої основи урацила (який є аналогом тиміну, "Т", і утворює зв'язки тільки з аденином, "А", з молекули ДНК), що повторюється. Вони додавали ці І-РНК в тестові пробірки з сумішшю амінокислот, причому в кожній пробірці лише одна з амінокислот була помічена радіоактивною міткою. Дослідники виявили, що штучно синтезована ними І-РНК ініціювала утворення білку лише в одній пробірці, де знаходилася мічена амінокислота фенілаланін. Так вони встановили, що послідовність " - У-У-У-" на молекулі І-РНК (і, отже, еквівалентну їй послідовність " - А-А-А-" на молекулі ДНК) кодує білок, що складається тільки з амінокислоти фенілаланіну. Це було першим кроком до розшифровки генетичного коду. Сьогодні відомо, що три пари основ молекули ДНК (такий триплет дістав назву кодон) кодують одну амінокислоту в білці. Виконуючи експерименти, аналогічні описаному вище, генетики врешті-решт розшифрували увесь генетичний код, в якому кожному з 64 можливих кодонів відповідає певна амінокислота. У 1968 році Ніренберг, разом зі своїми колегами Робертом Холлі і Гобіндом Кораною отримав Нобелівську премію за розшифровку генетичного коду і встановлення механізму білкового синтезу.

Дослідження вчених відкрило принципово нові можливості в області вивчення спадкових захворювань та пошуку методів їх лікування.


Властивості генетичного коду

Дослідження генетичного коду розкрили його основні властивості:

Триплетність - кожна амінокислота кодується послідовністю із трьох нуклеотидів - триплетом або кодоном (серед 64 кодонів 61 - змістовний і 3 незмістовні кодони - УАА, УГА та УАГ).

Специфічність - один кодон відповідає лише одній амінокислоті.

Виродженість (надлишковість) - одній амінокислоті відповідають кілька кодонів (наприклад серину чи лейцину відповідають 6 кодонів, метионіну - всього 1).

Колінеарність - послідовність нуклеотидів в молекулі і-РНК точно відповідає амінокислотній послідовності у поліпептидному ланцюгу.

Односпрямованість - зчитування інформації в процесі транскрипції і трансляції відбувається лише в напрямку 5' - 3' кінець.

Неперекриваємість - останній нуклеотид попереднього кодону не належить наступному триплету.

Безперервність - між триплетними „словами” відсутні „розділові знаки".

Універсальність - в усіх організмах одні і ті самі амінокислоти кодуються одними і тими ж нуклеотидами (проте така властивість характерна лише для ядерного генетичного коду; мітохондріальний генетичний код має деякі відмінності від ядерного).

Варіанти генетичного коду

Більшість організмів переважно користуються одним варіантом коду, так званим "стандартним кодом" [4], проте це не завжди є правилом. Перший приклад відхилення від стандартного генетичного коду був відкритий в 1979 році при дослідженні генів мітохондрій людини. З того часу було знайдено декілька подібних варіантів [5] including various alternative mitochondrial codes, [6], наприклад, прочитування стоп-кодону стандартного коду UGA як кодону, що визначає триптофан у мікоплазм. У бактерій і архей GUG і UUG часто використовуються як стартові кодони. В деяких випадках гени починають кодувати білок із старт-кодона, який відрізняється від зазвичай використовуваного даним видом [4]. У деяких білках нестандартні амінокислоти, такі як селенцистеин і пірролізін вставляються рибосомою, під час считування стоп-кодону за умовами наявності певних послідовностей в мРНК після кодону. Селенцистеїн часто розглядається як 21-а, а пірролізін 22-й амінокислоти, що входять до складу білків. Незважаючи на ці виключення, у усіх живих організмів генетичний код має загальні риси: кодон складаються з трьох нуклеотидів, де два перших є визначальний, кодони транслюються тРНК і рибосомами в послідовність амінокислот. Відхилення від стандартного генетичного коду [5] [6].

Таблиця прикладів варіантів генетичного коду

Приклад

Кодон

Звичайне значення

Читається як:

Деякі види дріжджів роду Candida

CUG

Лейцин

Серин

Мітохондрії, в тому числі і Saccharomyces cerevisiae

CU (U, C, A, G)

Лейцин

Серин

Мітохондрії вищих рослин

CGG

Аргінін

Триптофан

Мітохондріїї (у всіх без виключення организмів, що досліджувалися)

UGA

Стоп

Триптофан

Мітохондірії ссавців, дрозофіли, S. cerevisiae і багатьох найпростіших

AUA

Ізолейцин

Метіонин = Старт

Прокаріоти

GUG

Валин

Старт

Еукаріоти (рідко)

CUG

Лейцин

Старт

Еукаріоти (рідко)

GUG

Валін

Старт

Прокаріоти (рідко)

UUG

Лейцин

Старт

Еукаріоти (рідко)

ACG

Треонін

Старт

Мітохондрії ссавців

AGC, AGU

Серин

Стоп

Мітохондрії дрозофіли

AGA

Аргінін

Стоп

Мітохондрії ссавців

AG (A, G)

Аргінін

Стоп


Генетичний код як система

''Найважчим в проблемі коду було зрозуміти, що код існує. На це знадобилося ціле століття. Коли це зрозуміли, то для того, щоб розібратися в деталях, вистачило які-небудь десять року'' [8].

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее