11103 (Как ген, хромосома и клетка противодействуют среде и избегают гибели)

2016-07-31СтудИзба

Описание файла

Документ из архива "Как ген, хромосома и клетка противодействуют среде и избегают гибели", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "биология" в общих файлах.

Онлайн просмотр документа "11103"

Текст из документа "11103"

Реферат

"Как ген, хромосома и клетка противодействуют среде и избегают гибели"

Открытие ферментативных функций РНК

Еще в 1965 г. Рич высказал мнение, что до возникновения генетического кода в его современной форме роль примитивной рибосомы играла крупная молекула РНК. Ее поверхность могла использоваться для конденсации цепи мРНК с более мелкими молекулами РНК, к которым были присоединены аминокислоты или другие молекулы. Согласно Ричу, этот примитивный механизм мог функционировать как первичный конвейер для сборки полиаминокислот. Открытие, что сама РНК обладает ферментативными свойствами, делает это предположение весьма вероятным. Как утверждает Гилберт, в начальный период эволюции клетки белковые ферменты были ей не нужны. Синтез новой молекулы РНК из предшественников и РНК-матрицы могли катализировать РНК-ферменты, называемые рибозимами. С самого начала эволюции клетки молекулы РНК выполняли каталитические функции, что было необходимо для самосборки этих молекул из нуклеотидного "бульона". Просто они делали это медленнее, чем белковые ферменты, появившиеся позднее и лишь значительно повысившие скорость протекания в клетке реакций.

Полисахариды выполняют в клетке функции, ранее приписывавшиеся генам.

Не следует забывать, что в молекулах ДНК и РНК имеется сахарофосфатный остов. Следовательно, они не могли появиться в клетке до того, как образовались полисахариды. А из этого вытекает, что ДНК и РНК уже зависят от той упорядоченности, которая свойственна организации сахаров и их функциям.

Кроме того, теперь выясняется, что моносахариды способны, подобно нуклеотидам и аминокислотам, служить кодовыми словами молекулярного языка клетки. Специфичность многих природных соединений записана в моносахаридах, в которых слова образуются путем вариации типов используемых сахаров, характера их связей и точек ветвления.

1. Чистые полисахариды могут выступать в роли антигенов и нести специфическую иммунологическую информацию. Галактоза служит маркером, детерминирующим время жизни многих сывороточных гликопротеинов в крови млекопитающих.

2. Узнавание клеток обеспечивается находящимися на клеточной поверхности сахарами, которые служат рецепторами.

С помощью многих полисахаридов чисто химическим путем осуществляется ряд клеточных процессов, которые прежде связывали с продуктами генов.

Как ДНК противодействует среде

Физико-химические процессы, в которых участвуют макромолекулы, уже так жестко определены и так прочно сопряжены в циклах взаимодействия с другими макромолекулами, что влияние на них внутренней среды клетки, а тем более среды, окружающей клетку или организм в целом, затруднено.

Что касается ДНК, то наилучшим примером служит процесс ее репарации. Если в молекулу ДНК включаются основания таким образом, что при этом разрушается ее первоначальная организация, то немедленно проявляется четко выраженная канализация. Молекула способна к репарации нанесенного ей повреждения, причем ее первоначальная структура полностью восстанавливается. Так поддерживается жесткая химическая канализация.

Однако самое существенное состоит в том, что ДНК не способна производить репарацию сама по себе: за этот процесс ответственна определенная группа белков. Из этого видно, как при зарождении клеточной организации возникли взаимозависимость и тесная связь главных макромолекул друг с другом.

Ген представляет собой настолько высокоразвитую структуру, что он способен избегать воздействий среды многими способами. Благодаря своей высокоспециализированной организации он эволюционирует по собственным каналам.

1. Изменения генетического кода не всегда ведут к изменениям аминокислотной последовательности того продукта, синтез которого данный ген кодирует. Вследствие вырожденности кода не всякая мутация сопровождается заменой аминокислоты, определяемой данным триплетом; это бывает в том случае, когда исходный и мутантный триплеты кодируют одну и ту же аминокислоту. Следовательно, передача и закрепление мутации этого типа в каком-либо белке определяются физико-химической организацией ДНК, которая "заморозила" код в вырожденном состоянии.

2. Псевдогены – это гены, имеющие такие же нуклеотидные последовательности, как и нормальные гены, но оставшиеся по причине незначительной молекулярной модификации молчащими, т.е. нефункционирующими. Примером служат гены 5S-PHK. Псевдогены встречаются также у человека, например гены псевдо-дзэта-глобина и псевдо-бета-глобина. Псевдогены представляют собой "замаскированные" гены, которые при определенных условиях могут защищать нормальные гены.

3. Сходную категорию составляют гены, присутствующие в генотипе в качестве полноценных функциональных единиц, но не функционирующие вследствие репрессии. К этой группе принадлежат рибосомные гены, которые могут быть выявлены путем гибридизации ДНК–ДНК. Репрессия осуществляется на молекулярном уровне.

4. Существуют гены, которые в норме обладают лишь одним специфическим свойством, но при поступлении сигнала со стороны какого-либо компонента хромосомы могут изменить свою функцию. Таким образом они замещают другие участки хромосомы, выполняя их функции. Примером служат теломеры, которые могут принять на себя функцию центромер в случае внесения в хромосомный набор гетерохромного участка.

5. Все гены "обманывают отбор" благодаря своей жесткой внутренней организации и постоянным взаимодействиям с другими участками ДНК, регулирующими их функцию, однако некоторые гены делают это более явным образом. Кроу изучал один из генов дрозофилы, которому он приписал такое действие, поскольку этот ген вызывает в мейозе отклонения, приводящие к нарушению отношения при расщеплении. Выживание хромосом после мейоза регулируется генетически. Нарушение расщепления вызывает некий ген S, изменяющий отношение 50:50 на отношение 99:1. Ген S находится в хромосоме II, но создает этот эффект лишь при совместном действии с другими генами. Кроу пришел к выводу, что этот ген "обманывает отбор", поскольку, изменяя отношение при расщеплении, он оказывается представленным в большем числе, чем его аллель, локализованный в гомологичной хромосоме. Кроме того, Кроу полагает, что взаимодействие между тремя генами осуществляется при посредничестве химической информации. Следовательно, дифференциальное расщепление происходит не в результате какого-то абстрактного отбора на организменном уровне, но определяется организацией и взаимодействием генов, под жестким диктатом физико-химических правил, строго контролирующих формирование генов.

6. Бриттен и Кон одними из первых осознали неспособность отбора действовать на хромосомном уровне на множественные копии генов. Они показали, что последовательности ДНК в сотнях тысяч копий включались в геномы высших организмов и становились составными частями их хромосом. Они были вынуждены признать, что: "Динамика отбора в отношении этого набора генов должна в корне измениться. Вследствие огромного числа копий их элиминация может оказаться неосуществимой".

7. У полиплоидов мутации остаются неприкосновенными. Полиплоиды возникают в результате умножения всего генома с его полным набором хромосом, происходящего в один или несколько этапов. Таким образом, полиплоид может накапливать мутации, "неповрежденные" отбором, на что уже указывал Оно. Дальнейшие исследования еще больше прояснили эту ситуацию. При образовании полиплоидов новые дуплицированные гены оказываются молчащими, что практически сводит к нулю воздействие среды на эти хромосомы.

8. Может показаться, что в случае уникальных копий ситуация иная. Однако и это не так. Бриттен и Дэвидсон сравнивали скорости замены оснований в генах, детерминирующих белки, и в уникальной ДНК, не участвующей в этом процессе. Оказалось, что скорость замены одинакова. Они пришли к выводу, что "эти скорости, возможно, представляют скорость замены в отсутствие давления отбора".

9. Независимость гена от внутриклеточной и внешней среды гораздо сильнее, чем можно себе представить. Ген обладает способностью оценивать свою численность и регулировать ее главным образом по собственным правилам. Это проявляется в магнификации генов и в их амплификации. При изучении магнификации генов у дрозофилы был обнаружен локус дикого типа, состоящий из 130–300 копий генов, кодирующих рРНК. Если в результате мутаций в геноме оказалось менее 130 копий, то у потомков восстанавливается нормальное число генов, что и называют магнификацией. Изучение амплификации у Xenopus также показывает, что в ооцитах имеется механизм, способный оценивать и регулировать число генов рРНК. У гетерозиготных мутантов вместо ожидавшегося половинного числа генов рРНК было обнаружено нормальное их число, достигаемое благодаря регуляторной деятельности генома.

Как хромосома противодействует влияниям среды и избегает гибели

Хромосома, в основе поведения которой лежит случайность, не может избежать воздействия среды, но организованная хромосома способна к этому по той простой причине, что ей не остается ничего другого. Коль скоро хромосоме свойственна упорядоченность, ей внутренне присущи определенные правила поведения. Обладая такими собственными правилами, хромосома, очевидно, должна лишь следовать им, не поддаваясь воздействиям внешних факторов.

В основе упорядоченности этой клеточной органеллы лежит несколько механизмов.

1. Хромосома строилась в соответствии с химическим принципом самосборки. Самосборка неизбежна и иерархична; она создала собственные каналы молекулярной организации, обеспечивающие высокую степень независимости от среды.

2. Хромосома – замкнутая система. На первый взгляд эта черта хромосомы в данном контексте кажется несущественной, но она имеет решающее значение для ее эволюции. Хромосома – это не просто "нитка генов" или "кусочек ДНК"; на обоих концах ее замыкают четко выраженные особые участки – теломеры и центромеры. Обычно хромосома заканчивается на обоих концах униполярными теломерами, но у телоцентрических хромосом на одном конце эту функцию несет центромера. Без теломер хромосома гибнет. Хромосома представляет собой компартмент, а поэтому она способна сама создавать свою организацию. В хромосоме бактерий нет высокоразвитых теломер, имеющихся в хромосомах эукариот. Она разрешила проблему проще – с помощью кольцевидной формы. Кольцо – это также замкнутая система, что облегчает развитие внутренней организации.

3. Хромосома обладает целым арсеналом средств, позволяющих ей следовать собственным правилам и избегать любых посягательств на свою целостность, но в то же время она способна изменять свою структуру и функцию упорядоченным образом. Этот процесс направляется исключительно физико-химическими принципами, по которым создавалась ее первоначальная структура. К таким средствам относятся: 1) перестройки, направляющие мутационный процесс так, что допускается возникновение только данного фенотипа; 2) эффекты положения, изменяющие молекулярные функции генов; 3) наличие нуклеотидных последовательностей, способных изменять функцию и замещать другие участки ДНК, принимая на себя их функции; примером служат центромеры, способные брать на себя функцию теломер в телоцентрических хромосомах; 4) наличие транспозонов, дающих возможность хромосоме вводить участки в определенные сайты. Вместе с эписомами бактерий они позволяют вносить упорядоченность в мутации и перестройки.

Хромосомное поле выявляет строгую упорядоченность в центромеро-теломерном участке

В настоящее время все еще преобладает мнение, что в мутационном процессе и в организации хромосом главную роль играет случайность. Случайность – самая простая и самая удобная концепция, поскольку она позволяет сразу объяснить все явления, которые со строгих физико-химических позиций все еще далеко не ясны.

Недавние молекулярно-биологические исследования привлекли внимание к упорядоченным процессам построения генов и хромосомных перестроек у эукариот. Кроме того, появляются основания полагать, что мутационный процесс может направляться путем регуляции физико-химических событий, происходящих в ДНК.

Однако эукариотическая хромосома с ее гигантскими размерами все еще остается далеко не изученной на молекулярном уровне как целостная структура, т.е. как вполне определенная и строго ограниченная единица. Поэтому большинство генетиков продолжают рассматривать ее как некую случайную конструкцию.

Еще в 1950-х годах были получены данные, указывающие на жесткость структуры эукариотической хромосомы. Эта структура сформировалась в виде градиентов хромомеров, которые у более чем 70 видов начинаются у центромеры. Они сохраняют свою организацию независимо от вариаций длины хромосом. Это привело к созданию концепции хромосомного поля, согласно которой между разными участками одной хромосомы существуют определенные взаимоотношения, детерминируемые главным образом расположением центромер и теломер. В то время сведений о локализации генов было мало; не было и молекулярно-биологических методов, которые можно было бы использовать для проверки такой концепции. Однако структурные данные столь убедительно свидетельствовали в пользу жесткой и упорядоченной организации, что были сделаны следующие предсказания: 1) гены располагаются в центромеро-теломерном поле неслучайным образом; 2) каждый структурный ген и каждая последовательность ДНК стремятся занять в этом поле оптимальное место; 3) существует иерархия хромосомных участков и взаимодействие между ними, оказывающие влияние на их функцию; 4) перестройки происходят случайным образом, но следуют правилам, которые сохраняют общую структуру поля. За последние годы были собраны данные, подтвердившие справедливость этих предсказаний: 1) у более чем 700 видов, от водорослей до человека, была установлена локализация генов рРНК, которые расположены в теломерах, причем это расположение настолько регулярно, что его можно описать линейным уравнением; 2) большая часть других последовательностей ДНК, которые могут быть распознаны у большого числа видов, занимает определенное положение в пределах поля, т.е. некоторые располагаются вблизи теломер, другие вблизи центромер, а третьи – в медиальных областях плечей; 3) цитогенетические исследования на молекулярном уровне, проведенные рядом авторов, показали, что местоположение данной последовательности ДНК имеет решающее значение для определения ее функции.

Изменение положения влияет как на репликацию, так и на транскрипцию ДНК.

В одном из исследований были изучены на молекулярном уровне последовательности ДНК, участвующие в наиболее резко выраженных хромосомных перестройках среди всех, известных у высших млекопитающих. Объектом для этого исследования были выбраны олени, так как они отличаются наиболее сильной изменчивостью по числу хромосом: у самки мунтжака 2п = 6, а у самца 2п = 7; у северного оленя 2я = 70.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее