10630 (Спецификация нервной ткани)

2016-07-31СтудИзба

Описание файла

Документ из архива "Спецификация нервной ткани", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "биология" в общих файлах.

Онлайн просмотр документа "10630"

Текст из документа "10630"

Спецификация нервной ткани


Региональная спецификация нервной ткани

У взрослых животных клетки различных областей нервной системы имеют существенные отличия в своем фенотипе в зависимости от той функции, которую они выполняют. Клетки мозжечка отличаются от клеток коры полушарий, и оба типа клеток — от сетчатки. Каким образом происходит формирование таких различных фенотипов клеток в процессе развития? Как и у других клеток, фенотип нейрона определяется тем, какие гены он экспрессирует, что, в свою очередь, контролируется факторами транскрипции, белками, которые связываются с регуляторными зонами одного или нескольких генов и влияют на процессы их транскрипции. Развитие характеризуется последовательной и иерархической экспрессией факторов транскрипции, каждый из которых влияет на экспрессию последующего и ограничивает конечный фенотип клетки.

Рис. 1. Развитие заднего мозга позвоночных β виде сильно сегментированной структуры. (А) Диаграмма трехдневного эмбриона цыпленка, иллюстрирующая сегментарную организацию ромбомеров (r1-r8) в заднем мозге. (В) Паттерн организации клеток в ромбомерах r1-r7 трехдневного мозга цыпленка. Ретикулярные нейроны (слева) и брахиомоторные нейроны (справа) образуют сегментарный повторяющийся паттерн. Мотонейроны и их аксоны образуют черепно-мозговые нервы V, VII и IX пары.

Исследованию региональной спецификации нервной ткани в мозгу позвоночных значительно помогло то, что были открыты гомологи генов плодовой мухи дрозофилы, которые определяют расположение и зависящую от расположения дифференцировку клеток эмбриона. Эти гены оказались сходными с генами позвоночных и часто выполняют сходные функции. Большинство из этих генов кодирует факторы транскрипции.


Рис. 2. Сегментарная экспрессия генов в ромбомерах с r1 до r8 в заднем мозге позвоночных. Серые полоски указывают ромбомеры, в которых происходит экспрессия генов; черные полоски указывают высокий уровень экспрессии. Ранние факторы транскрипции, рецептор тирозинкиназы семейства Eph и его лиганды образуют сегментарный паттерн ромбомеров Семейство гомеобоксных генов Нох определяет судьбу клеток в пределах каждого ромбомера в зависимости от сегмента. Данные получены на эмбрионах цыплят и мышей.


Гомеотические гены и сегментация

Удивительными примером подобного сходства в функционировании генов у настолько разных животных являются результаты исследований заднего мозга позвоночных. В отличие от всего остального мозга позвоночных, задний мозг эмбриона (rhombencephalon) имеет четкое сегментарное строение. Каждый сегмент его демонстрирует общий паттерн нервной дифференцировки, однако от сегмента к сегменту дифференцировка имеет свои особенности (рис. 1). Было идентифицировано несколько генов, паттерны экспрессии которых на ранних стадиях развития коррелируют с границами сегментов заднего мозга (рис. 2). Эти гены делятся на две категории:

(1) Гены первой категории играют роль в создании общей структуры, состоящей из повторяющихся сегментных единиц. Некоторые гены этой группы кодируют факторы транскрипции (kreisler, Krox-20), другие кодируют рецептор тирозинкиназы (Sek-l по Sek-4) или его лиганды (Elf-2). (Рецептор тирозинкиназы представляет собой трансмембранный белок, у которого внутриклеточный домен, представляющий собой фермент тирозинкиназу, активируется при связывании лиганда с внеклеточным доменом.)

(2) Вторая категория содержит гены, которые определяют судьбу каждого сегмента. Эти гены образуют высококонсервативное семейство Нох генов.

Свойства Нох генов были впервые описаны у дрозофилы, у которой они регулируют гомеостаз. Гомеотические гены представляют собой управляющие гены, которые координируют экспрессию многих других генов во время развития. Например, мутация гомеотических генов семейства Нох у дрозофилы приводит к тому, что одна часть тела заменяется другой; таким образом на месте антенны может развиться нога. Гомеотические гены содержат консервативную последовательность ДНК, гомеобокс. Гомеобокс кодирует последовательность из 60 аминокислот, которые распознают и связываются с определенной последовательностью ДНК серии подчиненных генов. Каждый гомеотический ген, таким образом, координирует экспрессию большого числа генов, которые вместе определяют строение одного сегмента эмбриона.

Сегментарный паттерн экспрессии генов семейства Нох наблюдается в заднем мозгу цыплят и грызунов, что приводит нас к предположению, что Нох гены могут играть роль гомеотических управляющих генов, регулирующих процессы развития позвоночных и создания определенных структур относительно рострокаудальной оси в определенных областях заднего мозга эмбриона. Данные, полученные при помоши трансплантации, выключения определенных генов и эктопической экспрессии, согласуются с этими идеями. Дополнительным доказательством является изучение мутаций Нох генов и других гомеобоксных генов у человека, которые приводят к изменениям в определенных областях ЦНС.

Следующий очевидный вопрос: а что определяет паттерн экспрессии Нох генов? Ответом, по крайне мере частично, является градиент ретиноевой кислоты. Ретиноевая кислота вырабатывается в Гензеновском узелке, который называется Шпемановским организатором (Spemann organizer) у эмбрионов птиц и позвоночных (см. рис. 3). Но ретиноевая кислота не просто активирует транскрипцию всех Нох генов: была описана систематическая разница чувствительности различных генов Нох семейства к ретиноевой кислоте. Таким образом, диффузия ретиноевой кислоты из Гензеновского узелка способствует формированию градиента, который играет большую роль в упорядоченной экспрессии различных Hax генов в рострокаудальном направлении в заднем мозге.


Хорда и базальная пластинка

Строение и функпчонирование нервной системы позвоночных варьируют в дорзовентральном и рострокаудальном направлении. Например, полоска специализированных глиальных клеток, названных базальной пластинкой (floor plate), расположена по средней линии вдоль вентральной поверхности спинного мозга. Соседние, более латерально расположенные базальиые области нервной трубки образуют мотонейроны, более дорзальные зоны дают начало интернейронам, и самые дорзальные области образуют нервный гребень.

Характерные свойства вентральной хорды, такие как дифференцировка базальной пластинки и образование мотонейронов, регулируются сигналом из спинного мозга (notochord). Таким образом, если пересадить в эмбрион еше одну хорду, рядом с нервной трубкой, то это приведет к формированию второй базальной пластинки и второй группы мотонейронов (рис. 3), а если у эмбриона удалить хорду, то ни мотонейроны, ни базальная пластинка не формируются.

Сигналы из хорды, которые управляют формированием клеток базальной пластинки и мотонейронов, являются продуктами транскрипции гена Sonic hedgehog24). Белок Sonic hedgehog синтезируется клетками хорды (а затем также клетками базальной пластинки), концентрируется на их поверхностях и диффундирует к соседним клеткам. Высокий уровень Sonic hedgehog на поверхности хорды приводит к формированию клеток базальной пластинки из клеток нервной трубки. Более низкий уровень ведет к экспрессии гомеотического гена (Mkx-2.2), что вызывает развитие клеток в висцеральные мотонейроны. Еще более низкий уровень Sonic hedgehog вызывает транскрипцию Рах-6, которые угнетают экспрессию Nkx-2.2, что позволяет клеткам развиваться по их основному пути и становиться соматическими мотонейронами.


Общая схема региональной дифференцировки

Рострокаудальный и дорзовентральный градиенты факторов транскрипции определяют локальную идентификацию клеток в пределах ЦНС. Эти же факторы способны приводить к развитию довольно различных свойств в зависимости от того, в каком месте эмбриона они экспрессируются. Например, белок Sonic hedgehog определяет вентральный фенотип вдоль рострокаудальной оси, приводя к образованию мотонейронов в спинном мозге, серотонинергических нейронов в передней части заднего мозга, дофаминергических нейронов в задней части заднего мозга, глазодвигательных нейронов в передней области среднего мозга. Подобным же образом другие факторы транскрипции (ВМР-4 и ВМР-7) приводят к образованию дорзального фенотипа30). Общим правилом является то, что возможные пути развития плюрипотентной клетки-предшественницы в определенной области развивающейся нервной системы в первую очередь ограничиваются ее положением относительно переднезадней оси, например, путем экспрессии Нох генов (рис. 23.9)31). Возможные клеточные фенотипы в дальнейшем еще более ограничиваются с учетом дорзовентрального положения по средней линии при помощи таких посредников, как Sonic hedgedog.

Рис. 3. Индуцированное хордой образование базальной пластинки и двигательных нейронов во время развития спинного мозга. (А и В) Специфическая окраска при помощи антител к клеткам базальной пластинки (F). (А) Нормальный эмбрион цыпленка. (В) Добавление клеток второй хорды (N) вызывает образование второй базальной пластинки. (С и D) Специфическая окраска при помощи антител к клеткам базальной пластинки, двигательным нейронам и афферентам спинального ганглия. (С) Нормальный эмбрион. (D) При удалении хорды клетки базальной пластинки и двигательной пластинки отсутствуют, а клетки спинального ганглия (D) занимают необычное вентральное положение. Аксоны сенсорных интернейронов, которые обычно идут в составе вентральной части спинного мозга, сейчас формируют пучки волокон, которые покидают спинной мозг (стрелка).


Происхождение нейронов и клеток глии

У позвоночных индукционные взаимодействия между клетками играют важную роль в определении их дальнейшей судьбы. У более простых организмов судьба клетки может быть определена автономно на основании ее происхождения.


Происхождение клеток и индукционные взаимодействия в простых нервных системах

Происхождение клеток наиболее хорошо исследовано на примере простых беспозвоночных, таких как пиявка, кузнечик, плодовая муха и маленькая нематода Caenorhabditis elegans. В этих препаратах возможно проследить развитие каждой клетки и исследовать формирование таких характеристик, как свойства мембраны, трансмиттеры, рост аксонов и их ветвление. У С. elegans, которая содержит всего около 300 нейронов, эмбрион настолько маленький и прозрачный, что можно идентифицировать каждый нейрон и проследить его работу при помощи микроскопа. Альтернативным подходом может быть маркирование отдельных клеток и определение того, какие типы клеток из них получаются. Такого рода анализ, впервые предложенный Вайсблатом, Стентом и их коллегами для эмбрионов пиявки, включает в себя введение внутриклеточных маркеров, таких как флуоресцентный декстран или фермент пероксидаза хрена (HPR), в отдельные клетки и таким образом исследование дальнейшего потомства либо на живом эмбрионе, либо после окраски эмбриона, когда можно увидеть клетки, в которых находится фермент. Можно провести сравнительные эксперименты, вводя комплементарные цепи ДНК, кодирующие гены флуоресцентного белка, или создавая трансгенных животных, которые экспрессируют этот протеин.

Рис. 4. Система координат пространственной информации в заднем мозге позвоночных, устанавливаемая в два этапа. (А) Сначала определяется рострокаудальная позиция, например по экспрессии гена Hox. (В) После этого дорзовентральная позиция определяется градиентами сигналов средней линии, такими как Sonic Hedgehog и BMP 4/7. (С) Результирующая двумерная система координат пространственной информации ограничивает возможный репертуар клеточной дифференцировки плюрипотентных клеток-предшественников.

Эксперименты подобного рода показывают, что у простых беспозвоночных вполне возможно воспроизвести определенную последовательность в делении и дифференцировке клеток. Таким образом, используя луч лазера можно вызывать гибель отдельных идентифицированных клеток с целью проследить, каким образом это повлияет на судьбу оставшихся клеток. В большинстве случаев выжившие клетки игнорируют потерю своего соседа, направление их развития определено автономно, на основании того, к какой клеточной линии они принадлежат. У подобных клеток экспрессия генов определяется факторами, которые изначально находятся в их цитоплазме или ядре и представляют собой независимые внутриклеточные сигналы. В других случаях, однако, потеря соседа может повлиять на судьбу выживших клеток. Таким образом, даже у животных, у которых имеются жестко определенные паттерны деления клеток, их дальнейшее развитие может изменяться в зависимости от индукционных взаимодействий.


Индукционные взаимодействия при развитии глаз дрозофилы

Стереотипно происходящее развитие сложного глаза дрозофилы представляет собой еще одну систему, в которой возможно прямое наблюдение для идентификации отдельных клеток и прослеживания их дальнейшего развития. Кроме того, генетика дрозофилы дает очень большие возможности для оценки роли происхождения клеток и индукционных взаимодействий между ними в дифференцировке нервной ткани. Возможно выделение мутантов, у которых нет определенного клеточного типа или у которых паттерн дифференцировки лишь незначительно нарушен, что позволяет определить их влияние на судьбу остальных клеток.

Рис. 4. Индукционные взаимодействия, регулирующие развитие фоторецепторных клеток у дрозофилы. (А) Сканограмма сложного глаза дрозофилы. Каждая фасетка представляет собой один омматидий. (В) Нормальное развитие дифференцировки восьми фоторецепторов в каждом омматидий. Seven/ess (sev-- ) и bride of seven (boss ) мутации нарушают дифференцировку R7. (С) Сигнальные каскады, регулирующие дифференцировку R7. Продукт boss гена, интегральный мембранный белок, экслрессируемый в R8 (Boss), активирует продукт гена sev, рецептора тирозинкиназы (SevRTK). Sev киназа запускает внутриклеточный сигнальный каскад, активирующий MAP киназу, которая имеет несколько мишеней. MAP киназа фосфорилирует протеин Van (который бы иначе блокировал дифференцировку), приводя к его распаду. MAP киназа также вызывает экспрессию белка Phyl который вместе со вторым протеином, Sina, приводит к распаду фактора транскрипции Ttk88 Ttk88 предотвращает нервную дифференцировку. MAP киназа также активирует Pntp2 и АР-1, два фактора транскрипции, которые способствуют нейрональной дифференцировке.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее