189 (Особенности гравитационного взаимодействия)

2016-07-30СтудИзба

Описание файла

Документ из архива "Особенности гравитационного взаимодействия", который расположен в категории "". Всё это находится в предмете "авиация и космонавтика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "авиация и космонавтика" в общих файлах.

Онлайн просмотр документа "189"

Текст из документа "189"

Оглавление

Введение

  1. Небольшой экскурс в развитии теории гравитации

  2. О природе гравитационных сил

  3. Особенности гравитационного взаимодействия

Заключение

Список литературы

Приложение

Введение

Одна из аксиом современной науки гласит: любые материальные объекты во Вселенной связаны между собой силами всемирного тяготения. Благодаря этим силам формируются и существуют небесные тела – планеты, звезды, галактики и Метагалактика в целом. Форма и структура этих тел и материальных систем, а также относительное движение и взаимодействие определяются динамическим равновесием между силами их тяготения и силами инерции масс.

В течение всей своей жизни человек ощущает силу тяжести своего тела и предметов, которые ему приходится поднимать.

Однако еще на полтора века раньше до Ньютона и Гука знаменитый польский ученый Николай Коперник писал о тяготении: «Тяжесть есть не что иное, как естественное стремление, которым отец Вселенной одарил все частицы, а именно соединяться в одно общее целое, образуя тела шаровидной формы». Аналогичные мысли высказывали и другие ученые. Найденные Ньютоном и Гуком формулы закона тяготения позволили с большой точностью рассчитать орбиты планет и создать первую математическую модель Вселенной.

Вопрос о том, существует ли окружающий нас мир сам по себе или он является продуктом деятельности разума (принадлежащего некому высшему существу или каждому конкретному индивиду) составляет суть основного вопроса философии, классически формулируемом в виде дилеммы о первичности материи или сознания. Окружающие нас объекты природы имеют внутреннюю структуру, т.е. в свою очередь сами состоят из других объектов, (яблоко состоит из клеток растительной ткани, которая сложена из молекул, являющихся объединениями атомов и т.д.). При этом естественным образом возникают различные по сложности уровни организации материи: космический, планетарный, геологический, биологический, химический, физический.

Влияет или нет распределение всей материи во Вселенной на протекание физических процессов? Существует или нет какая-либо связь между гравитационным взаимодействием и принципом неопределённости? Конечно, в современной физике существуют и другие вопросы, на которые пока нет ответа.

Гравитация есть взаимодействие посредством обмена импульсами между разнонаправлено движущимися материальными системами.

Особенности гравитационного взаимодействия можно понять, изучая динамику наиболее удобной гравитирующей системы, – планеты Земля, основываясь на единстве законов, действующих в любой области физической реальности. Но необходимо изучать динамику Земли как двухполюсной активной (живой) системы, а не монолитной, пусть и слоисто-симметричной, абстрактной математической модели. Такая полярность сил тяготения обусловлена следующими факторами.

  1. Универсальностью сил тяготения в природе. В физической реальности не существует иных взаимодействий, кроме гравитационных.

  2. Еще в 1936–1937 годах возможность такого распределения плотности была получена Булленом, но расценена как неприемлемая.

  3. Однозначным несоответствием прогнозируемых максимальных давлений в центре Земли существующему минимуму силы тяжести – единственной причине (согласно классической физике) возникновения высоких давлений.

  4. Показателями разуплотнения внутренних оболочек могут служить избыток реального экваториального вздутия планеты (70 м) и несоответствие нормальных градиентов силы тяжести, соотносимых с разностью экваториального и полярного радиусов.

  5. До настоящего времени не зафиксированы поперечные сейсмические волны, прошедшие сквозь внутреннее ядро.

  6. Достаточно известные геофизикам оценки физического состояния вещества ядра по расчетам момента инерции пустотелой и сплошной моделей планеты, и сравнение его с данными анализа динамики системы «Земля – Луна» выполнены некорректно.

Хорошо известно, что основная масса Солнечной системы (около 99.8%) приходится на ее единственную звезду – Солнце. Суммарная масса планет составляет только 0.13% от общей. На остальные тела системы (кометы, спутники планет, астероиды и метеоритное вещество) приходится только 0.0003% массы. Из приведенных цифр следует, что законы Кеплера для движения планет в нашей системе должны выполняться очень хорошо.

Весьма привлекательная теория совместного происхождения солнца и планет из единого газового облака, сжавшегося под действием гравитационных сил, оказывается в противоречии с наблюдаемым неравномерным распределением вращательного момента (момента импульса) между звездой и планетами.

Обсуждаются модели происхождения планет в результате гравитационного захвата Солнцем тел, прилетающих из далекого космоса, эффекты, вызванные взрывом сверхновых. В большинстве «сценариев» развития солнечной системы существование пояса астероидов, так или иначе, связывается с его близким соседством с самой массивной планетой системы.

1. Небольшой экскурс в развитии теории гравитации

Первоначально считалось, что Земля неподвижна, а движение небесных тел казалось весьма сложным. Галилей одним из первых высказал предположение о том, что наша планета не является исключением и тоже движется вокруг Солнца. Эта концепция была встречена достаточно враждебно. Тихо Браге решил не принимать участия в дискуссиях, а заняться непосредственными измерениями координат тел на небесной сфере. Позднее данные Тихо попали к Кеплеру, который нашел простое объяснение наблюдаемым сложным траекториям, сформулировав три законов движения планет (и Земли) вокруг Солнца:

1. Планеты двигаются по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

2. Скорость движения планеты изменяется таким образом, что площади, заметаемые ее радиус-вектором за равные промежутки времени, оказываются равными.

3. Периоды обращения планет одной Солнечной системы и большие полуоси их орбит связаны соотношением:

Сложное движение планет на «небесной сфере», наблюдаемой с Земли, согласно Кеплеру, возникало вследствие сложения этих планет по эллиптическим орбитам с движением наблюдателя, совершающего вместе с Землей орбитальное движение вокруг солнца и суточное вращение вокруг оси планеты.

Прямым доказательством суточного вращения Земли был эксперимент, поставленный Фуко, в котором плоскость колебаний маятника поворачивалась относительно поверхности вращающейся Земли.

Законы Кеплера прекрасно описывали наблюдаемое движение планет, но не вскрывали причин, приводящих к такому движению (напр. вполне можно было считать, что причиной движения тел по Кеплеровым орбитам являлась воля какого-либо существа или стремление самих небесных тел к гармонии). Теория гравитации Ньютона указала причину, обусловившую движение космических тел по законам Кеплера, правильно предсказала и объяснила особенности их движения в более сложных случаях, позволила в одних терминах описать многие явления космического и земного масштабов (движение звезд в галактическом скоплении и падение яблока на поверхность Земли).

Ньютон нашел правильное выражение для гравитационной силы, возникающей при взаимодействии двух точечных тел (тел, размеры которых малы по сравнению с расстоянием между ними), которое совместно со вторым законом в случае, если масса планеты много меньше массы звезды, приводило к дифференциальному уравнению, допускающему аналитическое решение. Не привлекая каких-либо дополнительных физических идей, чисто математическими методами можно показать, что при соответствующих начальных условиях достаточно малые начальные расстояние до звезды и скорость планеты) космическое тело будет совершать вращение по замкнутой, устойчивой эллиптической орбите в полном согласии с законами Кеплера (в частности второй закон Кеплера является прямым следствием закона сохранения момента импульса, выполняющегося при гравитационных взаимодействиях, поскольку момент силы относительно массивного центра всегда равен нулю). При достаточно высокой начальной скорости (ее значение зависит от массы звезды и начального положения) космическое тело движется по гиперболической траектории, в конце концов, уходя от звезды на бесконечно большое расстояние.

Важным свойством закона гравитации является сохранение его математической формы в случае гравитационного взаимодействия неточечных тел в случае сферически-симметричного распределения их масс по объему. При этом роль играет расстояние между центрами этих тел.

2. О природе гравитационных сил

Сформулированный Ньютоном закон всемирного тяготения относится к фундаментальным законам классического естествознания. Методологической слабостью концепции Ньютона был его отказ обсуждать механизмы, приводящие к возникновению гравитационных сил («Я гипотез не измышляю»). После Ньютона неоднократно предпринимались попытки создания теории гравитации.

Подавляющее большинство подходов связано с так называемыми гидродинамическими моделями гравитации, пытающимися объяснить возникновение сил тяготения механическими взаимодействиями массивных тел с промежуточной субстанцией, которой приписывается то или иное название: «эфир», «поток гравитонов», «вакуум» и т.д. Притяжение между телами возникает вследствие разряжения Среды, возникающей либо при ее поглощении массивными телами, либо при экранировке ими ее потоков. Все эти теории имеют общий существенный недостаток: правильно предсказывая зависимость силы от расстояния, они неизбежно приводят к еще одному ненаблюдаемому эффекту: торможению тел, движущихся относительно введенной субстанции.

Существенно новый шаг в развитии концепции гравитационного взаимодействия был сделан А. Эйнштейном, создавшим общую теорию относительности.

Ньютон: «Тяготение к Солнцу составляется из тяготения к отдельным частицам его и при удалении от Солнца убывает в точности пропорционально квадратам расстояний даже до орбиты Сатурна, что следует из покоя афелиев планет и даже до крайних афелиев комет, если только эти афелии находятся в покое» [6, с. 662]. Эта особенность гравитационного взаимодействия, приложенная к условиям внутри тела и приводит к убывающей зависимости гравитационной силы с уменьшением расстояния от центра тела.

Вторая проблема гравитационного поля, связанная со стабильностью взаимного положения небесных тел, тоже постепенно решалась, и в частности, большой шаг в направлении её решения был сделан с одной стороны Эддингтоном [7], а с другой стороны Френкелем [8, гл. 7], предположившими с различными вариациями возможность обобществления электронов атомов в ядрах звёзд при гравитационном сжатии. Более полно данная концепция с учётом особенностей гравитационного сжатия протозвёздного облака, описанного Шкловским (9). Причём данная концепция очень хорошо согласуется с поступающими новыми данными о небесных телах, как солнечной системы, так и дальних небесных объектов и главное, полностью снимает проблему неограниченного сжатия вещества вселенной. Ведь с учётом формирования электронного кокона звезды и ассоциации звёзд взаимное гравитационное притяжение удалённых горячих небесных тел эффективно компенсируется взаимным отталкиванием электронных оболочек этих тел, препятствуя, с одной стороны, неограниченному сжатию всего вещества вселенной, а с другой стороны препятствуя столкновению между звёздами и их ассоциациями, как и каннибализму галактик. Тем самым снимается проблема, которую видел в своей концепции ещё Ньютон.

Сформулированный Ньютоном закон всемирного тяготения стал одним из выдающихся достижений в области естествознания за всю историю его существования. Этот закон позволил на строгой научной основе подвести физическую базу под философско-космическими положениями о материальном единстве мира, всеобщей взаимосвязи всех природных явлений. Закон всемирного тяготения оказался одним из самых впечатляющих и вместе с тем загадочных основоположений теоретического естествознания.

Применение этого закона позволило добиться выдающихся успехов в области небесной механики (предсказавшей «на кончике пера» существование ранее неизвестных планет) и астрофизики, космологии и практического освоения космического пространства, позволило летательным аппаратам и человеку преодолеть земное притяжение и осуществить прорыв в просторы Вселенной.

3. Особенности гравитационного взаимодействия

Особенность гравитационного взаимодействия состоит в том, что под действием силы гравитационной природы прироста полной энергии пробного тела не происходит (т.е. полная энергия свободно падающего (и не излучающего!) пробного тела не меняется, оставаясь равной полной начальной энергии; перераспределяется лишь соотношение между его энергетическими компонентами). Если в самом начале движения полная энергия пробного тела соответствовала его массе покоя, то по мере разгона все большая её часть соответствует уже кинетической составляющей массы, которая появляется за счет уменьшения массы покоя. В этой особенности гравитационного действия заключены истоки принципиального различия между силами гравитации и инерции. Свойство инерции проявляет себя при непосредственном взаимодействии тел между собой, в результате чего любое тело, в зависимости от особенности взаимодействия и выбора системы отсчета наблюдателем, может, как получить дополнительную кинетическую энергию, либо утратить имеющуюся, передав её другим телам. Силы гравитационной природы способны перераспределять энергию из одного вида в другой в пределах данного тела: энергию покоя, внутреннюю энергию, поперечную кинетическую составляющую энергии – в продольную кинетическую энергетическую составляющую. В соответствии с перераспределением составляющих энергии изменяется импульс тела.

Величина, оказываясь продуктом действия гравитационного поля, увеличивает инерцию тела в направлении падения, но сама уже не подвержена влиянию гравитационного поля. Поле само по себе не в состоянии различить, является ли продуктом его действия, или результатом действия силы иной природы. Поэтому, независимо от происхождения, вполне резонно предположение, что на эту составляющую гравитационное поле влияния не оказывает.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее