121 (Еволюція зірок), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Еволюція зірок", который расположен в категории "". Всё это находится в предмете "авиация и космонавтика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "авиация и космонавтика" в общих файлах.

Онлайн просмотр документа "121"

Текст 4 страницы из документа "121"

Глибше проникаючи в нейтронну зірку, ми досягаємо четвертого шару, щільність при цьому зростає незначно - приблизно в п'ять разів. Проте, при такій щільності ядра вже не можуть підтримувати свою фізичну цілісність: вони розпадаються на нейтрони, протони й електрони. Велика частина речовини перебуває у виді нейтронів. На кожен електрон і протон приходиться по 8 нейтронів. Цей шар, власне кажучи, можна розглядати як нейтронну рідину, «забруднену» електронами і протонами.

Нижче цього шару знаходиться ядро нейтронної зірки. Тут щільність приблизно в 1,5 рази більше, ніж у шарі. І, проте, навіть таке невелике збільшення щільності приводить до того, що частки в ядрі рухаються багато швидше, ніж у будь-якому іншому шарі. Кінетична енергія руху нейтронів, змішаних з невеликою кількістю протонів і електронів, настільки велика, що постійно відбуваються непружні зіткнення часток. У процесах зіткнення народжуються усі відомі в ядерній фізиці частки і резонанси, яких нараховується більш тисячі. Цілком ймовірно, є присутнім велике число ще не відомих нам часток.

Температури нейтронних зірок порівняно високі. Цього і варто очікувати, якщо врахувати, як вони виникають. За перші 10 - 100 тис. років існування зірки температура ядра зменшується до декількох сотень мільйонів градусів. Потім настає нова фаза, коли температура ядра зірки повільно зменшується унаслідок випущення електромагнітного випромінювання.

ЧОРНІ ДІРИ

Якщо маса зірки в два рази перевищує сонячну, то до кінця свого життя зірка може вибухнути як наднова, але якщо маса речовини після вибуху, усе ще перевершує дві сонячні, то зірка повинна в щільне малюсіньке тіло, тому що гравітаційні сили цілком придушують усякий внутрішній опір стискові. Учені думають, що саме в цей момент катастрофічний гравітаційний колапс приводить до виникнення чорної діри. Вони вважають, що з закінченням термоядерних реакцій зірка вже не може знаходитися в стійкому стані. Тоді для масивної зірки залишається один неминучий шлях - шлях загального і повного стиску (колапсу), що перетворює її в невидиму чорну діру.

У 1939р. Р. Оппенгеймер і його аспірант Снайдер у Каліфорнійському університеті (Беркли) займалися з'ясуванням остаточної долі великої маси холодної речовини. Одним з найбільш вражаючих наслідків загальної теорії відносності Эйнштейна виявилася наступне: коли велика маса починає колапсувати, цей процес не може бути зупинена і маса стискується в чорну діру. Якщо, наприклад, не обертова симетрична зірка починає стискуватися до критичного розміру, відомого як гравітаційний радіус, або радіус Шварцшильда (названий так на честь Карла Шварцшильда, що першим указав на його існування). Якщо зірка досягає цього радіуса, то вже не що не може перешкодити їй завершити колапс, тобто буквально замкнутися в собі. Чому ж дорівнює гравітаційний радіус? Строге математичне рівняння показує, що для тіла з масою Сонця гравітаційний радіус дорівнює майже 3 км, тоді як для системи, що включає мільярд зірок, - галактики - цей радіус виявляється рівним відстані від Сонця до орбіти планети Уран, тобто складає близько 3 млрд. км.

Які ж фізичні властивості «чорних дір» і як учені припускають знайти ці об'єкти? Багато вчених роздумували над цими питаннями; отримані деякі відповіді, що здатні допомогти в пошуках таких об'єктів.

Сама назва - чорні діри - говорить про те, що це клас об'єктів, які не можна побачити. Їхнє гравітаційне поле настільки сильне, що якби якимсь шляхом удалося виявитися поблизу чорної діри і направити убік від її поверхні промінь самого могутнього прожектора, то побачити цей прожектор було б не можна навіть з відстані, що не перевищує відстань від Землі до Сонця. Дійсно, навіть якби ми змогли сконцентрувати усе світло Сонця в цьому могутньому прожекторі, ми не побачили б його, тому що світло не змогло б перебороти вплив на нього гравітаційного поля чорної діри і залишити її поверхня. Саме тому така поверхня називається абсолютним обрієм подій. Вона являє собою границю чорної діри.

Учені відзначають, що ці незвичайні об'єкти нелегко зрозуміти, залишаючись у рамках законів тяжіння Ньютона. Поблизу поверхні чорної діри гравітація настільки сильна, що звичні ньютоновскі закони перестають тут діяти. Їх варто замінити законами загальної теорії відносності Ейнштейна. Відповідно до одному з трьох наслідків теорії Ейнштейна, залишаючи масивне тіло, світло повинний випробувати червоний зсув, тому що він повинний випробувати червоний зсув, тому що він втрачає енергію на подолання гравітаційного поля зірки. Випромінювання, що приходить від щільної зірки, подібної до білого карлика - супутникові Сиріуса А, - лише злегка зміщається в червону область спектра. Ніж щільніше зірка, тим більше цей зсув, так що від надміцною зірки зовсім не буде приходити випромінювання у видимій області спектра. Але якщо гравітаційна дія зірки збільшується в результаті її стиску, то сили тяжіння виявляються настільки великі, що світло взагалі не може залишити зірку. Таким чином, для будь-якого спостерігача можливість побачити чорну діру цілком виключена! Але тоді природно виникає питання: якщо вона невидима, то, як же ми можемо неї знайти? Щоб відповісти на це питання, учені прибігають до митецьких вивертів. Руффіні й Уілер досконально вивчили цю проблему і запропонували кілька способів нехай не побачити, але хоча б знайти чорну діру. Почнемо з того, що, коли чорна діра народжується в процесі гравітаційного колапсу, вона повинна випромінювати гравітаційні хвилі, що могли б перетинати простір зі швидкістю світла і на короткий час спотворювати геометрію простору поблизу Землі. Це перекручування проявилося б у виді гравітаційних хвиль, що діють одночасно на однакові інструменти, установлені на земній поверхні на значних відстанях друг від друга. Гравітаційне випромінювання могло б приходити від зірок, що випробують гравітаційний колапс. Якщо протягом звичайного життя зірка оберталася, то, стискуючись і стаючи, усе менше і менше, вона буде обертатися усе швидше, зберігаючи свій момент кількості руху. Нарешті вона може досягти такої стадії, коли швидкість руху на її екваторі наблизиться до швидкості світла, тобто до гранично можливої швидкості. У цьому випадку зірка виявилася б сильно деформованої і могла б викинути частина речовини. При такій деформації енергія могла б іти від зірки у виді гравітаційних хвиль з частотою порядку тисячі коливань у секунду (1000 Гц).

Дж. Вебер установив пастки гравітаційних хвиль в Аргоннской національної лабораторії поблизу Чикаго й у Мэрилендском університеті. Вони складалися з масивних алюмінієвих циліндрів, що повинні були коливатися, коли гравітаційні хвилі досягнуть Землі. Використовувані Вебером детектори гравітаційного випромінювання реагують на високі (1660 Гц), так і на дуже низькі (1 коливання в годину) частоти. Для детектировання останньої частоти використовується чуттєвий гравіметр, а детектором є сама Земля. Власна частота квадрупольних коливань Землі дорівнює одному коливанню за 54 хв.

Усі ці пристрої повинні були спрацьовувати одночасно в момент, коли гравітаційні хвилі досягнуть Землі. Дійсно вони спрацьовували одночасно. Але, на жаль, пастки включалися занадто часто - приблизно раз на місяць, що виглядало досить дивно. Деякі учені вважають, що хоча досвіди Вебера й отримані їм результати цікаві, але вони недостатньо надійні. З цієї причини багато хто відносяться досить скептично до ідеї детектировання гравітаційних хвиль (експерименти по детектированню гравітаційних хвиль, аналогічні досвідам Вебера, пізніше були перевірені в ряді інших лабораторій і не підтвердили результатів Вебера. В даний час вважається, що досвіди Вебера помилкові).

Роджер Пенроуз, професор математики Биркбекського коледжу Лондонського університету, розглянув цікавий випадок колапсу й утворення чорної діри. Він також допускає, що чорна діра зникає, а потім виявляється іншим часом у якомусь іншому всесвіті. Крім того, він затверджує, що народження чорної діри під час гравітаційного колапсу є важливою вказівкою на те, що з геометрією простору-часу відбувається щось незвичайне. Дослідження Пенроуза показують, що колапс закінчується утворенням сингулярності, тобто він повинний продовжуватися до нульових розмірів і нескінченної щільності об'єкта. Останні умова дає можливість іншого всесвіту наблизитися до нашої сингулярності, і не виключено, що сингулярність перейде в цей новий всесвіт. Вона навіть може з'явитися в якому-небудь іншому місці нашого власного Всесвіту.

Деякі вчені розглядають утворення чорної діри як маленьку модель того, що, відповідно до пророкувань загальної теорії відносності, у кінцевому рахунку, може трапитися з Всесвіт. Загальновизнано, що ми живемо в незмінно розширюється Вселеної, і один з найбільш важливих і пекучих питань науки стосується природи Вселеної, її минулого і майбутнього. Без сумніву, усі сучасні результати спостережень указують на розширення Всесвіту. однак на сьогодні одне із самих каверзних питань такий: чи сповільнюється швидкість цього розширення, і якщо так, те чи не стиснеться Всесвіт через десятки мільярдів років, утворити сингулярності. Очевидно, коли-небудь ми зможемо з'ясувати, по якому шляху випливає Всесвіт, але, бути може, багато раніш, вивчаючи інформацію, що просочується при народженні чорних дір, і ті фізичні закони, що керують їх долею, ми зможемо пророчити остаточну долю Всесвіту.

Майже усе своє життя зірка зберігає температуру і розмір практично постійними. Значення головної послідовності полягає в тім, що більшість звичайних зірок виявляються нормальними, тобто позбавленими яких-небудь особливостей. Ми вправі очікувати, що ці зірки підкоряються визначеним залежностям, подібним, наприклад, згаданої головної послідовності. Більшість зірок виявляються на цій похилій лінії - головної послідовності, тому, що зірка може прийти на цю лінію усього лише за кілька сотень тисяч років, а, залишивши неї, прожити ще кілька сотень мільйонів років, більшість зірок свідомо залишається на головній послідовності протягом мільярдів років. Народження і смерть - мізерно малі миті в житті зірки. Наше Сонце, що є звичайною зіркою, знаходиться на цій послідовності вже протягом 5-6 млрд. років і, очевидно, проведе на ній ще стільки ж часу, тому що зірки з такою масою і таким хімічним складом, як у Сонця, живуть 10-12 млрд. років. Зірки багато меншої маси знаходяться на головній послідовності приблизно 50 млрд. років. Якщо ж маса зірки в 30 разів перевершує сонячну, то час її перебування на головній послідовності складе усього близько 1 млн. років.

Повернемося до розгляду процесів, що відбуваються при народженні зірки: вона продовжує стискуватися, стиск супроводжується зростанням температури. Температура повзе нагору, і от величезна газова куля починає світитися, його вже можна спостерігати на тлі темного нічного неба як тьмяний червонуватий диск. Значна частка енергії його випромінювання як і раніше приходиться на інфрачервону область спектра. Але це ще не зірка. У міру того як речовина протозірки ущільнюється, воно усе швидше падає до центра, розігріваючи ядро зірки до більш високих температур. Нарешті температура досягає 10 млн. ДО, і тоді починають протікати термоядерні реакції - джерело енергії всіх зірок у Всесвіті. Як тільки термоядерні процеси включаються в дію, космічне тіло перетворюється в повноцінну зірку.

Стискуючись, пил і газ утворять протозірку; її речовина являє собою типовий зразок речовини навколишньої нас частини космічного простору. Говорячи про зразок речовини Всесвіт, ми маємо на увазі, що цей шматочок міжзоряного середовища на 89% складається з водню, на 10%-з гелію; такі елементи, як кисень, азот, вуглець, неон і т.п. складають у ньому менш 1%, а всі метали, разом узяті, - не більш 0,25%. Таким чином, зірка в основному складається з тих елементів, що найчастіше зустрічаються у Всесвіті. І оскільки більш усього у Всесвіті представлений водень, то, звичайно, будь-які термоядерні реакції повинні протікати з його участю.

Подекуди зустрічаються куточки космічного простору з підвищеним змістом важких елементів, але це лише місцеві аномалії - залишки давніх зоряних вибухів, що розкидали і розсіяли в околиці важкі елементи. Ми не будемо зупинятися на таких аномальних областях з підвищеною концентрацією важких елементів, а зосередимо увагу на зірках, що складаються в основному з водню.

Коли температура в центрі протозірки досягає 10 млн. ДО, починаються складні (але детально вивчені) термоядерні реакції, у ході яких з ядер водню (протонів) утворяться ядра гелію; кожні чотири протони, поєднуючи, створюють атом гелію. Спочатку, коли з'єднуються один з одним два протони, виникає атом важкого водню, або дейтерію. Потім останній зіштовхується з третім протоном, і в результаті реакції народжується легкий ізотоп гелію, що містить два протони й один нейтрон.

У сум'ятті, що панує в ядрі зірки, що швидко рухаються атоми легкого гелію іноді зіштовхуються один з одним, у результаті чого з'являється атом звичайного гелію, що складає з двох протонів і двох нейтронів. Два зайвих протони повертаються назад у гарячу суміш, щоб коли-небудь знову вступити в реакцію, що породжує гелій. У цьому процесі близько 0,7% маси перетворюється в енергію. Описаний ланцюжок реакцій - один з важливих термоядерних циклів, що протікають у ядрах зірок при температурі близько 10 млн. К. Деякі астрономи вважають, що при більш низьких температурах можуть протікати інші реакції, у яких беруть участь літій, берилій і бор. Але вони відразу роблять застереження, що якщо такі реакції і мають місце, те їхній відносний внесок у генерацію енергії незначний.

Коли температура в надрах зірки знову збільшується, у дію вступає ще одна важлива реакція, у якій як каталізатор бере участь вуглець. Почавши з водню і вуглецю-12, така реакція приводить до утворення азоту-13, що спонтанно розпадається на вуглець-13 - ізотоп вуглецю, більш важкий, чим той, з якого реакція починалася. Вуглець-13 захоплює ще один протон, перетворюючи в азот-14. Останній подібним же шляхом стає киснем-15. Цей елемент також хитливий і в результаті спонтанного розпаду перетворюється в азот-15. І, нарешті, азот-15, приєднавши до себе четвертий протон, розпадається на вуглець-12 і гелій.

Таким чином, побічним продуктом цих термоядерних реакцій є вуглець-12, що може знову покласти початок реакціям даного типу. Об'єднання чотирьох протонів приводить до утворення одного атома гелію, а різниця в масі чотирьох протонів і одного атома гелію, що складає близько 0,7% від первісної маси, виявляється у виді енергії випромінювання зірки. На Сонце щосекунди 564 млн. т водню перетворюється в 560 млн. т гелію, а різниця - 4 млн. т речовини - перетворюється в енергію і випромінюється в простір. Важливо, що механізм генерації енергії в зірці залежить від температури.

Саме температура ядра зірки визначає швидкість процесів. Отже, при такій температурі переважає протон - протонний цикл. При збільшенні температури до 16 млн. ДО, імовірно, обидва цикли дають рівний внесок у процес генерації енергії. Коли ж температура ядра піднімається вище 20 млн. ДО, що переважає стає вуглецевий цикл.

Як тільки енергія зірки починає забезпечуватися за рахунок ядерних реакцій, гравітаційний стиск, з якого почався весь процес, припиняється. Тепер самопідтримується реакція може продовжуватися протягом часу, тривалість якого залежить від початкової маси зірки і складає приблизно від 1 млн. років до 100 млрд. років і більше. Саме в цей період зірка досягає головної послідовності і починає своє довге життя, що протікає майже без змін. Целю вічність проводить зірка в цій стадії. Нічого особливого з нею не відбувається, вона не залучає до себе пильної уваги. Тепер це всього-на-всього повноцінний член зоряної колонії, загублений серед безлічі побратимів.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее