shpori (Электронные цепи и приборы (шпаргалка))

2016-07-30СтудИзба

Описание файла

Документ из архива "Электронные цепи и приборы (шпаргалка)", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "shpori"

Текст из документа "shpori"

1. Зонная модель полупроводника.

К полупроводникам (ПП) относятся вещества, занимающие по величине удельной электрической проводимости промежуточное положение между металлами и диэлектриками. Их удельная электрич. проводимость лежит в пределах от 10-8 до 105 см/м и в отличие от металлов она возрастает с ростом темпер-ры.

ПП представляют собой достаточно многочисленную группу веществ. К ним относятся химич. элементы: германий (Ge), кремний (Si), бор, углерод, фосфор, сера, мышьяк, селен, серое олово, теллур, йод, некоторые химич. соед-ния и многие органич. вещества.

В электронике находят применение ограниченное кол-во полупроводниковых материалов. Это, прежде всего Si, Ge, и арсенид галлия.

Применяемые в электронике ПП имеют весьма совершенную кристаллическую структуру. Их атомы размещены в пространстве в строго периодической последовательности на постоянных расстояниях друг от друга, образуя кристалл-ую решетку. Решетка наиболее распространенных в электронике полупроводников – Ge и Si – имеет структуру алмазного типа. В такой реш. каждый атом вещества окружен четырьмя такими же атомами, находящимися в вершинах правильного тетраэдра.

Каждый атом, находящийся в кристаллической решетке, электрически нейтрален. Силы, удерживающие атомы в узлах решетки, имеют квантово-механический характер; они возникают за счет обмена взаимодействующих атомов валентными электронами. Подобная связь атомов носит название ковалентной связи, для ее создания необходима пара электронов.

В Ge и Si, являющихся 4х-валентными элементами, на наружной оболочке имеется по четыре ковалентные связи с четырьмя ближайшими, окружающими его атомами.

рис. 1. рис. 2.

На рис. 1 показ. условн. изображ. кристалич. решетки Si на плоскости:

1 – атом кремния, 2 – ковалентная связь, образованная одним электроном.

На рис. 2 показ. образование свободного электрона под действием тепловой энергии:

1 – нарушенная ковалентн. связь, 2 – свободный электрон, 3 – незаполненная связь (дырка).

рис. 3.

EV – энергетич. уровень (max энергия связанного электрона), Ed – энергия донора, Ec – зона проводимости (min энергия свободного электрона), Eg – ширина запрещенной зоны.

EF – уровень Ферми, вероятность заполнения кот. равна ½.

2. Электропроводность полупроводников.

К полупроводникам (ПП) относятся вещества, занимающие по величие удельной электрической проводимости (ЭП) промежуточное положение между проводниками (металлы) и диэлектриками. Значения удельной ЭП этих трех классов веществ приведены в табл.

Основным признаком, выделяющим ПП как особый класс веществ, явл. сильное влияние температуры и концентрации примесей на их ЭП. Так, например, даже при сравнительно небольш. повыш. темп-ры проводимость ПП резко возрастает (до 5 – 6% на 1ºС).

У большинства ПП сильное изменение ЭП возникает под действием света, ионизирующих излучений и др. энергетич. воздействий. Т.о ПП – это вещество, удельная проводимость кот. существенно зависит от внешн. факторов.

Электропроводность ПП определяется направленным движением электронов под действием внешнего электрического поля.

В ПП валентная зона и зона проводимости разделены не широкой запрещенной зоной. Под действием внешнего эл. поля возможен переход электронов из валентной зоны в зону проводимости. При этом в валентной зоне возникают свободные энергетические уровни, а в зоне проводимости появляются свободные электроны, называемые электронами проводимости. Этот процесс наз. генерацией пар носителей, а не занятое электроном энергетич. состояние в валентной зоне – дырка.

Электропроводность, обусловленную генерацией пар носителей заряда электрон-дырка, называют собственной электропроводностью. Возвращение возбужденных электронов из зоны проводимости в валентную зону, в рез. которого пара носителей заряда электрон-дырка исчезает, называют рекомбинацией.

Дрейфовый ток. Электроны и дырки в кристалле нах-ся в сост. хаотического теплового движ-ия. При возникновении эл. поля на хаотич. движение накладывается компонента направленного движ., обусловленного действием этого поля. В рез. электроны и дырки начин. перемещ-ся вдоль кристалла – возникает эл. ток, кот. называется дрейфовым током.

Диффузионный ток обусловлен перемещением носителей заряда из области высокой концентрации в область более низкой концентр.

Одним из главных принципов, лежащих в основе многих физических процессов, явл. принцип электрической нейтральности полупроводника, заключающийся в том, что в сост. равновесия суммарный заряд в ПП равен нулю. Он выражается уравнением электронейтральности:

.

3. p-n переход в условиях термодинамического равновесия.

Основная часть полупроводниковых приборов – это p-n переход. p-n переход – это граница раздела между двумя ПП с разным типом электропроводности – p и n.

Мы знаем, в р-области дырок много, а в п-области их мало, и соответственно в п-области электронов много, а в р-области их мало. В результате такой разности концентрации возникает процесс диффузии. В результате чего возникают диффузионные токи дырок и электронов. Эти токи явл. токами основных носителей зарядов. Дырки из р-области переходят в п-область и рекомбинируют с электронами. Также электроны переходят из п-области в р-область и рекомбинируют с дырками. В рез. в р-п переходе образуется слой без подвижных носителей заряда, имеющий большое R, и кот. называется запирающим слоем. В этом слое имеются только отриц. заряды ионов, кот. создают отрицательный заряд –q, и положительный заряд ионов +q. Эти заряды создают эл. поле Eвн, направленное от + к – с отриц. потенциалом в р-области и положит. потенциалом в п-области. Эта разность потенциалов наз. контактной разностью потенциалов.

Эти заряды +q и –q препятствуют дальнейшему прохождению основных носителей ч/з р-п переход. Дырки отталкиваются от +q, а электроны отталкиваются от –q. Т.е. процесс диффузии приостанавливается и Iдиф дальше не растет. Поэтому мы говорим, что в р-п переходе возникает потенциальный барьер для основных носителей. В то же время эти объемные заряды +q и –q своим эл. полем Е действуют ускоряюще на неосновные носители зарядов (электроны из р-области притягиваются к +q, а дырки из п-области к –q). В результате неосновные носители под действием эл. поля Е легко перейдут ч/з р-п переход и создадут дрейфовые токи. Дрейфовые токи – это токи неосновных носителей. В какой-то момент времени дрейфовый и дифф. ток ч/з р-п переход становятся равными и противоположными, тогда Iобщ=Iдр+Iдиф=0.

Энергетическая диаграмма р-п перехода в состоянии термодинамического равновесия.

4. Переход металл-полупроводник.

Уровни энергии валентных электронов образуют валентную зону (ВЗ), а следующий уровень энергии, находящийся выше ВЗ образ. зону проводимости (ЗП). ЗП и ВЗ разделены запрещенной зоной (ЗЗ), ширина кот. различна у разных материалов.

У проводников-металлов – ВЗ заполнена частично, электроны занимают нижнюю часть зоны, а верхние уровни ВЗ не заполнены. Под действием слабого внешн. электр. поля валентные электроны приобрет. доп. энергию – кинетическую, заполняя в ВЗ занятые более высокие уровни энергии. Это означает, что электроны под действ. электр. поля приобрет. скорость и участвуют в перенесении электр. заряда, т.е. протекает электрический ток. Возможна и другая зонная структура проводника, при кот. ВЗ целиком заполнена валентными электронами, но ВЗ и ЗП перекрываются, т.е. ЗЗ отсутствует. В этом случае электроны под действием электр. поля могут приобретать дополнительную кинетич. энергию, занимая свободные уровни энергии в ЗП. Валентные электроны в металле принадлежат одновременно всем атомам кристалла и явл. свободными носителями заряда.

Если ВЗ заполнена целиком и ширина ЗЗ не равна 0, то валент. электроны не могут приобретать дополнит. кинетич. энергию и не явл. свободными. Если же вал. электрону собщить энергию, способную преодолеть ЗЗ, то он переходит из ВЗ на один из незанятых уровней ЗП и станов. свобод. носителем заряда. Одновременно в ВЗ появляется один свобод. уровень, соответствующий дырке, что позволяет электронам ВЗ перемещаться. Переход электрона из ВЗ в ЗП может произойти под действием тепловой энергии или какого либо другого источника энергии.

Если ширина ЗЗ относительно велика то тепловой энергии электронов недостаточно, чтобы перейти им из ВЗ в ЗП. Свободных носителей заряда в таких материалах нет и их относят к диэлектрикам.

5. p-n переход при прямом смещении.

Электронно-дырочным p-n наз. такой переход, кот. образован двумя областями ПП с разными типами проводимости: электронный и дырочный. Включение при кот. к p-n переходу прикладывается внешн. напряж. Uпр в противофазе с контактной разностью потенц. наз. прямым (см. рис. 1.). Как видно из потенциальной диаграммы (рис. 2) высота потенциального барьера уменьшается:

Uб=Uк-Uпр

Ширина p-n перехода также уменьшается h’. Дрейфовый ток уменьшается, диффузионный ток резко возрастает. Динамическое равновесие нарушается и ч/з p-n переход протекает прямой ток:

Iпр=Iдиф - Iдр ≈ Iдиф=Iобр ехр·(qeUпр / кТ).

Из формулы видно, при увелич. Uпр ток может возрасти до больших значений, т.к. он обусловлен движением основных носителей, концентрация которых в обеих областях ПП велика.

рис. 1.

ВАХ p-n перехода наз. зависимость тока, протекающего ч/з p-n переход, от величины и полярности приложенного U. Аналитич. выраж. ВАХ p-n перехода имеет вид:

I=Iобр [ехр·(qeU / кТ)-1], где Iобр – обратный ток насыщения p-n перехода, U – напряж., приложенное к p-n переходу

Хар-ка, построенная с использованием этого выражения, имеет 2 характерных участка (рис. 2).

рис. 2.

1. участок соответствующий прямому управляющему напряжению; 2. участок соответствующий Uобр.

При больших Uобр наблюдается пробой p-n перехода, при кот. Iобр резко увеличивается. Различают два вида пробоя: электрический и тепловой.

6. p-n переход при обратном смещении. Пробой p-n перехода.

Электронно-дырочным p-n наз. такой переход, кот. образован двумя областями ПП с разными типами проводимости: электронный и дырочный.

Включение, при кот. к p-n переходу прикладывается внешнее напряж. Uобр в фазе с контактной разностью потенциалов, наз. обратным (рис. 1.).

рис. 1.

Под действием эл. поля, создаваемого внешним источником Uобр, основные носители оттягиваются от приконтактных слоев вглубь полупроводника. Как видно из рис. 2 это приводит к расширению p-n перехода (h’>h). Потенциальный барьер возрастает и становится равным Uб=Uк+Uобр. Число основных носителей, способных преодолеть действие результирующего поля, уменьшается. Это приводит к уменьшению диффузионного тока, кот. может быть определен по формуле:

Iдиф=Iобр ехр·(-qeUобр / кТ).

При обр. включении преобладающую роль играет дрейфовый ток. Он имеет небольшую величину, т.к. создается движение неосновных носителей. Этот ток наз. обратным и определяется по формуле: Iобр=Iдр – Iдиф.

Пробоем наз. резкое увелич. I ч/з переход в области обратных напряж. превышающих U, называемое Uпроб. Существуют 3 основных вида пробоя: туннельный, лавинный и тепловой.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее