mtn_lek_002 (Большая коллекция шпор для МАТАНа (1 семестр 1 курс)), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Большая коллекция шпор для МАТАНа (1 семестр 1 курс)", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "математика" в общих файлах.

Онлайн просмотр документа "mtn_lek_002"

Текст 4 страницы из документа "mtn_lek_002"

В) принимает на коцах отрезков равные значения f(a)=f(b), тогда на (a,b)  т-ка такая что f‘(c)=0, т.е. с-крит. т-ка.

Док-во. Р-рим сначала, тривиальный случай, f(x) постоянная на [a,b] (f(a)=f(b)), тогда f‘(x)=0  x  (a,b), любую т-ку можно взять в кач-ве с. Пусть f const на [a,b], т.к. она непрер. на этом отрезке, то по т-ме Вейерштрасса она достигает своего экстрем. на этом отрезке и max и min. Поскольку f принимает равные знач. в гранич. т-ках, то хотя бы 1- экстр. – max или min обязательно достигается во внутр. т-ке. с(a,b) (в противном случае f=const), то по т-ме Ферма, тогда f‘(c)=0, что и требовалось д-ть.

Т-ма Тейлора. “О приближении гладкой ф-ци к полиномам”

Опр. Пусть ф-ция f(x) имеет в т-ке а и некоторой ее окрестности пр-ные порядка n+1. Пусть х - любое значение аргумента из указанной окрестности, ха. Тогда между т-ми а и х надутся т-ка  такая, что справедлива ф-ла Тейлора. f(x)=f(a)+f‘(a)/1!(x+a)+ f‘‘(a)/2!(x+a)^2+f^(n)(а)/n!+f^(n+1)()/(n+1)!(x-a)^(n+1).

Док-во. Сводится к Роллю путем введения вспом. переменной g(x).

g(x)=f(x)-f(a)-f‘(x)(x-a)-…-1/n!f^n(x)(x-a)^n-1/(n+1)!(x-a)^n+1. По т-ме Роляя  т-ка с из (a,b), такая что g(c)=0 =f^(n+1)(c)

Правило Лопиталя.

Пусть ф-ция f(x) и g(x) имеет в окр. т-ки х0 пр-ные f‘ и g‘ исключая возможность саму эту т-ку х0. Пусть lim(хх )=lim(xx)g(x)=0 так что f(x)/g(x) при xx0 дает 0/0. lim(xx0)f‘(x)/g‘(x)  (4), когда он совпадает с пределом отношения ф-ции lim(xx0)f(x)/g(x)= lim(xx0)f‘(x)/g‘(x) (5)

Док-во.

Возьмем  т-ку х>х0 и рассмотрим на [x0;x] вспом ф-цию арг. t

h(t)=f(t)-Ag(t), если t[x0;x], т.к. удовл. этому св-ву в окр-ти т-ки х0, а т-ку х мы считаем достаточно близкой к х0. Ф-ция h непрерывна на [x0;x], поскольку lim(tx0)h(t)=lim(tx0)[f(t)-Ag(t)]=lim(tx0)-A lim(tx0)g(t)=0=h(0)=> непр. t=x0 По т-ме Логранджа (x0,x) c:h‘‘(c)=0

Производная обратной ф-ции

Т-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции.

Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)0.

Пусть у0 – приращение независимой переменной у и х – соответствующее приращение обратной ф-ции x=(y). Напишем тождество: x/y=1:y/x (2) Переходя к пределу в рав-ве (2) при у0 и учитывая, что при этом также х0, получим: lim(y0)x/y=1:lim(x0)y/x => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции.

Производная обратной ф-ции

Т-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции.

Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)0.

Пусть у0 – приращение независимой переменной у и х – соответствующее приращение обратной ф-ции x=(y). Напишем тождество: x/y=1:y/x (2) Переходя к пределу в рав-ве (2) при у0 и учитывая, что при этом также х0, получим: lim(y0)x/y=1:lim(x0)y/x => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции.

Теорема Больцано-Вейерштрасса

Теорема Больцано-Коши

Теорема Вейерштрасса

Теорема Больцано-Вейерштрасса Из любой огран. посл-ти можно выбрать сход. подпосл-ть.

Док-во

1. Поскольку посл-ть ограничена, то  m и M, такое что  mxnM,  n.

1=[m,M] – отрезок, в котором лежат все т-ки посл-ти. Разделим его пополам. По крайней мере в одной из половинок будет нах-ся бесконечное число т-к посл-ти.

2 – та половина, где лежит бесконечное число т-к посл-ти. Делим его пополам. По краней мере в одной из половинок отр. 2 нах-ся бесконечное число т-к посл-ти. Эта половина - 3. Делим отрезок 3 … и т.д. получаем посл-ть вложенных отрезков, длинны которых стремятся к 0. Согластно о т-ме о вложенных отрезках,  единств. т-ка С, кот. принадл. всем отрезкам 1, какую-либо т-ку n1. В отрезке 2 выбираю т-ку xn2, так чтобы n2>n1. В отрезке 3 … и т.д. В итоге пол-ем посл-ть xnkk.

Теорема Больцано-Коши Пусть ф-ция непр-на на отрезке [a,b] и на концах отрезка принимает зн-ния равных знаков, тогда  т-ка с  (a,b) в которой ф-ция обращается в 0.

Док-во

Пусть Х – мн-во таких т-к х из отрезка [a,b], где f(x)<0. Мн-во Х не пустое. Х [a,b], значит х ограничено, поэтому оно имеет точную верхнюю грань. c=supx. acb покажем a

Теорема Вейерштрасса Непрерывная ф-ция на отрезке ограничена.

Док-во Предположим что ф-ция не ограничена. Возьмем целое пол-ное n, т.к. ф-ция не ограничена, то найдется xn[a,b], такое что f(xn)>n. Имеем посл-ть т-к xn. По т-ме Больцано-Коши из посл-ти xn можно выбрать сходящиюся подпосл-ть xnkx0. По т-ме о предельном переходе к неравенству.

axnkb ax0b x0[a,b]

Если посл-ть xnk сходится к x0, то f(xnk) будет сходится f(x0)

f(xnk)>nk, a nkf(xnk), т.е. f(xnk) б/б посл-ть.

С одной стороны f(xnk) стремится к опр. числу, а с др. стороны стремится к , пришли к противоречию, т.к. мы предположим, что ф-ция не ограничена. Значит наше предположение не верно.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее