165620 (Анализ почв и агрохимический анализ), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Анализ почв и агрохимический анализ", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "химия" в общих файлах.

Онлайн просмотр документа "165620"

Текст 3 страницы из документа "165620"

АlСl3+ 3 NaOH = А(ОН)3 + 3 NaCl

что равноценно реакции

3 НСl + 3 NaOH = 3 NaCl + 3 Н2О.Поглощённые ионы алюминия вытесняются и при обработке почвы раствором CH3COONa. В этом случае весь вытесненный алюминий переходит в осадок в виде гидроокиси.

По степени кислотности, определяемой в солевой вытяжке 0.1н. КKCl потенциометрически, почвы делятся на:

очень сильно кислые

сильно кислые

средне кислые

слабо кислые

близкие к нейтральным

нейтральные

рН менее 4.0

4.1-4.5

4.6 - 5.0

5.1 - 5.5

5.6-6.0

рН более 6.0

9)Определение рН, обменной кислотности и подвижного

алюминия по Соколову

Определение обменной кислотности основано на вытеснении из ППК ионов водорода и алюминия 1.0 н. раствором КKCl:

Образовавшуюся кислоту оттитровывают щёлочью и рассчитывают величину обменной кислотности, обусловленную суммой ионов водорода и алюминия. Al осаждают 3.5% р-ром NaF. В осадке образуется комплексная нейтральная соль-криолит:

AlCl3 + 6NaF = Na3AlF6 + 3NaCl

Повторное титрование раствора позволяет определить кислотность, обусловленную только ионами водорода. По разности данных первого и второго титрования проводят расчёт содержания алюминия в почве.

Ход анализа

1. На технических весах взять навеску 40 г воздушно-сухой почвы методом средней пробы.

2. Перенести навеску в коническую колбу ёмкостью 150-300 мл.

3. Прилить из бюретки 100 мл 1.0 н. KCl (рН 5.6-6.0).

4. Взбалтывать на ротаторе 1 час или взбалтывать 15 мин. и оставить на ночь.

5. Отфильтровать через воронку с сухим бумажным складчатым фильтром, отбросив первую порцию фильтрата.

6. В фильтрате определить значение рН потенциометрически.

7. Для определения обменной кислотности взять пипеткой 25 мл фильтрата в колбу Эрленмейера объемом 100 мл.

8. На горелке или электроплитке кипятить фильтрат 5 мин. по песочным часам для удаления углекислого газа.

9. Прибавить в фильтрат 2 капли фенолфталеина и оттитровать горячий раствор 0.01 или 0.02 н. раствором щёлочи (КОН или NaOH) до устойчивой розовой окраски — 1-ое титрование.

10. В другую колбу Эрленмейера взять пипеткой также 25 мл фильтрата прокипятить 5 мин., охладить в водяной бане до комнатной температуры.

11.В охлаждённый фильтрат прилить пипеткой 1.5 мл 3.5 %-го раствора фтористого натрия, перемешать.

12. Прибавить 2 капли фенолфталеина и оттитровать 0.01 или 0.02 н. раствором щёлочи до слабо-розовой окраски — 2-ое титрование.

Расчет

1. Обменная кислотность, обусловленная ионами водорода и алюминия (по результатам 1-го титрования) в мг-экв на 100 г сухой почвы:

где: Р - разведение 100/25=4; Н - навеска почвы в граммах; К- коэффициент влажности почвы; мл КОН- количество щёлочи, пошедшее на титрование; н. КОН - нормальность щелочи.

2 Расчет кислотности, обусловленной ионами водорода тот же, но по результатам второго титрования, после осаждения алюминия.

3. Расчёт содержания алюминия (ионов) по разности 1-го и 2-го определений (Н+ + Аl3+) мг-экв – Н+ мг-экв =Аl3+ мг-экв/100 г почвы, умножив полученное значение на 9 (эквивалентный вес алюминия), определяем количество алюминия в мг на 100 г почвы.

• При определении этих показателей во влажной почве одновременно

определяют процент влажности.

Реактивы

1. Раствор 1 н. КСl, 74.6 г х.ч. КСl растворить в 400-500 мл дистиллированной воды, перенести в мерную колбу 1 л и довести до метки. рН реактива должен быть 5.6-6.0 (проверить перед началом анализа - в случае необходимости установить нужное значение рН добавлением 10%-го раствора КОН)

2. 0.01 или 0.02 н. раствор КОН или NaOH готовится из навески реактива или фиксанала.

3. 3.5% раствор фтористого натрия, приготовленный на дистиллированной воде без СО2 (кипятить дистиллированную воду, упаривая до 1/3 первоначального объёма).

10) Методы определения приоритетных загрязняющих веществ

в почвах

Отдельно, в виду актуальности и важности задачи, следует упомянуть о необходимости анализа тяжелых металлов в почвах. Выявление загрязнения почв тяжелыми металлами производят прямыми методами отбора почвенных проб на изучаемых территориях и их химического анализа. Также используют ряд косвенных методов: визуальная оценка состояния фитогенезов, анализ распространения и поведения видов – индикаторов среди растений, беспозвоночных и микроорганизмов. Рекомендовано отбирать образцы почв и растительности по радиусу от источника загрязнения с учетом господствующих ветров по маршруту протяженностью 25-30 км. Расстояние от источника загрязнения для выявления ореола загрязнения может изменяться от сотен метров до десятков километров. Выявить уровень токсичности тяжелых металлов непросто. Для почв с разными механическими составами и содержанием органического вещества этот уровень будет неодинаков. Предложены ПДК для ртути – 25 мг/кг, мышьяка – 12-15, кадмия – 20 мг/кг. Установлены некоторые губительные концентрации ряда тяжелых металлов в растениях (г/млн.): свинец – 10, ртуть – 0,04, хром – 2, кадмий – 3, цинк и марганец – 300, медь – 150, кобальт – 5, молибден и никель – 3, ванадий – 2.

Кадмий. В растворах кислых почв он присутствует в формах Cd2+ , CdCl+ , CdSO4 , щелочных почв - Cd2+ , CdCl+ ,CdSO4 ,CdHCO3 . Ионы кадмия (Cd2+) составляют 80-90% общего количества в растворе за исключением тех почв, которые загрязнены хлоридами и сульфатами. В этом случае 50% общего количества кадмия составляют CdCl+ и CdSO4. Кадмий склонен к активному биоконцентрированию, что приводит в короткое время к его избытку в биодоступных концентрациях. Т.о., кадмий по сравнению с другими тяжелыми металлами является наиболее сильным токсикантом почв. Кадмий не образует собственных минералов, а присутствует в виде примесей, большая его часть в почвах представлена обменными формами (56-84%). Кадмий практически не связывается с гумусовыми веществами.

Свинец. Для почв характерны менее растворимые и менее подвижные формы свинца по сравнению с кадмием. Содержание этого элемента в водорастворимой форме составляет 1,4%, в обменной - 10% от валового; более 8% свинца связано с органическим веществом, большая часть этого количества приходится на фульваты. С минеральной составляющей почвы связано 79% свинца. Концентрации свинца в почвах фоновых районов мира 1-80 мг/кг. Результаты многолетних мировых исследований показали среднее содержание свинца в почвах 16 мг/кг.

Ртуть. Ртуть - самый токсичный элемент в природных экосистемах. Ион Hg2+ может присутствовать в виде индивидуальных ртутьорганических соединений (метил-, фенил-, этилртуть и др.). Ионы Hg2+ и Hg+ могут быть связаны с минералами как часть их кристаллической решетки. При низких значениях pH почвенной суспензии большая часть ртути сорбирована органическим веществом, а по мере увеличения pH возрастает количество ртути, связанной с почвенными минералами.

Свинец и кадмий. Для определения содержания свинца и кадмия в объектах природной среды на фоновом уровне наиболее широко применяется метод атомно-абсорбционной спектрофотометрии (ААС). Метод ААС основан на атомизации переведенного в раствор определяемого элемента в графитовой кювете в атмосфере инертного газа и поглощении резонансной линии спектра испускания лампы полого катода соответствующего металла. Абсорбцию свинца измеряют при длине волны 283,3 нм, кадмия при длине волны 228,8 нм. Анализируемый раствор проходит стадии сушки, озоления и атомизации в графитовой кювете при помощи высокотемпературного нагрева электрическим током в потоке инертного газа. Поглощение резонансной линии спектра испускания лампы с полым катодом соответствующего элемента пропорционально содержанию этого элемента в пробе. При электротермической атомизации в графитовой кювете предел обнаружения свинца 0,25 нг/мл, кадмия 0,02 нг/мл.Твердые образцы почвы переводят в раствор следующим образом: 5 г воздушно-сухой почвы помещают в кварцевую чашку, заливают 50 мл концентрированной азотной кислоты, осторожно упаривают до объема приблизительно 10 мл, добавляют 2 мл 1 н. раствора азотной кислоты. Пробу охлаждают и фильтруют. Фильтрат разбавляют до 50 мл бидистиллированной водой в мерной колбе. Аликвоту пробы 20 мкл микропипеткой вводят в графитовую кювету и измеряют концентрацию элемента.

Ртуть. Наиболее селективным и высокочувствительным методом определения содержания ртути в различных природных объектах является атомно-абсорбционный метод холодного пара. Пробы почвы минерализуют и растворяют смесью серной и азотной кислот. Получаемые растворы анализируют методом атомной абсорбции. Ртуть в растворе восстанавливают до металлической ртути и с помощью аэратора пары ртути подают непосредственно в кювету атомно-абсорбционного спектрофотометра. Предел обнаружения - 4 мкг/кг.Измерения проводят следующим образом: аппаратуру выводят на рабочий режим, включают микропроцессор, растворенную пробу объемом 100 мл переливают в пробу, затем добавляют 5 мл 10%-го раствора хлорида олова и немедленно вставляют аэратор с пробкой на шлифе. Фиксируют максимальное показание спектрофотометра, по которому и проводят расчет концентрации.

Б) Анализ растений

Анализ растений позволяет решить следующие задачи.

1. Исследовать трансформацию макро- и микроэлементов в системе почва- растение - удобрения при различных режимах выращивания растении.

2. Определить содержание основных биокомпонентов в растительных объектах и кормах: белков, жиров, углеводов, витаминов, алкалоидов и соответствие их содержания принятым нормам и стандартам.

3. Оценить меру пригодности растений для потребителя (нитраты, тяжелые металлы, алкалоиды, токсиканты).

1) Отбор растительной пробы

Отбор растительной пробы - ответственный этап работы, требует определённых навыков и опыта. Ошибки при отборе пробы и подготовке к анализу не компенсируются качественной аналитической обработкой собранного материала. Основа в отборе проб растений в агро- и биоценозах метод средней пробы. Чтобы средняя проба отражала статус всей совокупности растений, учитывают макро- и микрорельеф, гидротермические условия, равномерность и густоту стояния растений, их биологические особенности.

Растительные пробы отбираются в сухую погоду, в утренние часы, после высыхания росы. При изучении процессов обмена веществ в растениях в динамике эти часы соблюдаются в течение всего вегетационного периода.

Различают культуры сплошного сева: пшеница, овёс, ячмень, злаковые культуры, травы и др. и пропашные: картофель, кукуруза, свекла и т.п.

Для культур сплошного сева на опытном участке выделяются равномерно 5-6 площадок размером 0.25-1.00 м2, растения с площадки скашиваются на высоте 3-5 см. Общий объём взятого материала составляет объединенную пробу. После тщательного усреднения этой пробы отбирают средний образец массой 1 кг. Проводят взвешивание средней пробы, а затем разбор по ботаническому составу, учёт сорняков, больных растений, которые исключают из состава пробы.

Проводят разделение растений на органы с весовым учётом в пробе листьев, стеблей, початков, цветов, колосьев. Молодые растения не дифференцируют по органам и фиксируют целиком. Для культур пропашных, особенно высокостебельных, таких как кукуруза, подсолнечник и т.д. объединенную пробу составляют из 10-20 растений средней величины, взятых по диагонали делянки или поочерёдно в несмежных рядах.

При отборе корнеплодов выкапывают 10-20 растений средней величины, очищают от почвы, подсушивают, взвешивают, отделяют надземные органы и взвешивают корнеплоды.

Среднюю пробу составляют с учетом размера клубней, початков, корзинок и т.п. Для этого материал сортируют визуально на большие, средние, малые и соответственно долевому участию фракции составляют средний образец. У высокостебельных культур проба может усредняться за счет продольного расчленения всего растения от верхушки до основания.

Критерием оценки правильного отбора пробы является сходимость результатов химического анализа при параллельных определениях. Скорость химических реакций в растительных образцах, взятых в период активной вегетации, намного выше, чем во многих анализируемых объектах. За счёт работы ферментов продолжаются биохимические процессы, в результате которых происходит разложение таких веществ, как крахмал, белки, органические кислоты и особенно витамины. Задачи исследователя - сократить до минимума срок от взятия пробы до проведения анализа или фиксации растительного материала. Снижения скорости реакций можно добиваться работой со свежими растениями на холоде в климатокамере (+4°С), а также кратким хранением в бытовом холодильнике. В свежем растительном материале при естественной влажности проводят определение водорастворимых форм белков, углеводов, ферментов, калия, фосфора, определяют содержание нитратов и нитритов. С небольшой погрешностью эти определения можно выполнять в образцах растений после лиофильной сушки.

В фиксированных воздушно-сухих образцах определяют все макроэлементы, т.е. зольный состав растений, общее содержание белков, углеводов, жиров, клетчатки, пектиновых веществ. Высушивание растительных образцов до абсолютно- сухого веса для проведения анализа недопустимо, так как нарушается растворимость и физико-химические свойства многих органических соединений, происходит необратимая денатурация белков. При анализе технологических свойств любых объектов, допускается сушка при температуре не более 30°С. Повышенные температуры изменяют свойства белково-углеводных комплексов в растениях и искажают результаты определения.

2) Фиксация растительного материала

Сохранение органических и зольных веществ в растительных пробах в количествах, близких к их естественному состоянию, осуществляется за счёт фиксации. Применяется температурная фиксация и лиофильная сушка. В первом случае стабилизация состава растений осуществляется за счёт инактивации ферментов, во-втором - за счёт сублимации, при этом растительные ферменты сохраняются в активном состоянии, белки не денатурируют. Температурная фиксация растительного материала проводится в сушильном шкафу. Растительный материал помещают в пакеты из плотной бумаги типа «крафт» и загружают в сушильный шкаф, предварительно нагретый до 105-110°С. После загрузки выдерживают температуру 90-95°С в течении 10-20 минут в зависимости от свойств растительного материала. При такой температурной обработке за счёт паров воды происходит инактивация растительных ферментов. По окончании фиксации растительный материал должен быть влажным и вялым при этом он должен сохранить свою окраску. Дальнейшее высушивание пробы проводят при доступе воздуха в открытых пакетах при температуре 50-60°С в течение 3-4 ч. Превышать указанные интервалы температуры и времени не следует. Длительное нагревание при высокой температуре приводит к термическому разложению многих азотсодержащих веществ и карамелизации углеводов растительной массы. Растительные образцы с большим содержанием воды- корнеплоды, фрукты, ягоды и т.п. разделяют на сегменты так, чтобы в анализ попали периферийные и центральная части плода. Набор сегментов для пробы составляют из сегментов больших, средних и маленьких плодов или клубней в соответствующем соотношении их в урожае. Сегменты средней пробы измельчают и фиксируют в эмалированных кюветах. Если образцы объёмны, то надземную часть растений непосредственно перед фиксацией измельчают и быстро закрывают в пакеты. Если в образцах предполагается определение только набора химических элементов, их можно не фиксировать, а высушить при комнатной температуре. Высушивание растительного материала лучше провести в термостате при температуре 40-600С так как при комнатной температуре возможно загнивание массы и загрязнения пылевыми частицами из атмосферы. Не подвергают температурной фиксации образцы зерна и семян, но высушивают их при температуре не выше 30°С. Лиофилизация растительного материала (высушивание путём возгонки) основана на испарении льда минуя жидкую фазу. Высушивание материала при лиофилизации проводится следующим образом: отобранный растительный материал замораживают до твёрдого состояния, заливая образец жидким азотом. Затем образец помещают в лиофилизатор, где при низкой температуре и в условиях вакуума происходит высушивание. При этом влага поглощается специальным осушителем (реактивом) в качестве которого используется силикагель, хлористый кальций и т.д. Лиофильная сушка подавляет ферментативные процессы, но сами ферменты сохраняются.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее