151372 (Надпровідники першого та друго роду), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Надпровідники першого та друго роду", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151372"

Текст 2 страницы из документа "151372"

Річ у тому, що початковий газоподібний гелій тоді було дуже важко отримати. Спочатку в лабораторії Камерлінг-Оннеса гелій здобували, подрібнюючи шматки гірської породи з Ісландії. Лише потім на кораблі привезли з Північної Кароліни гелій, що містить, пісок, і вдалося отримати чверть літра рідкого гелію. Природно, Камерлінг-Оннес, що називається, тремтів над гелієм. Особливо його турбувала можливість появи тріщин в скляному дьюаре. Щоб у разі появи тріщин гелій не випарувався в повітря, в кріостаті весь час підтримувався тиск, менший атмосферного. За наявності тріщин атмосферне повітря, потрапляючи в них, заморозилося б і тим самим залікувало їх.

Звичайно, весь час стояти, напружено вдивляючись в свідчення манометра, було досить важко. І ось одного разу, коли Полотно – співробітник Камерлінг-Оннеса – проводив вимірювання, хлопчик задрімав, і тиск в кріостаті почав поволі підніматися. Тому почала підніматися і температура рідкого гелію. Полотно, знаходячись в кімнаті, де розташовувалися дзеркальні гальванометри, раптом виявив, що зайчики гальванометрів почали відхилятися, реєструючи появу опору у ртуті. Так із-за неуважності помічника і було відкрито явище надпровідності. До цього слід додати, що якби Камерлінг-Оннес не зменшував тиск гелієвої пари, то надпровідність у ртуті не була б їм виявлена, оскільки температура надпровідного переходу у ртуті (4,15 К) трохи менше температури кипіння рідкого гелію за нормальних умов (4,2 К).

Те, що зменшення тиску пари гелію приводить до пониження температури, легко зрозуміти. Всі знають, що в горах, де тиск повітря менший, ніж на рівнинах, зварити круто яйця не можна, і зв'язано це з тим, що температура кипіння води знижується. Те ж саме відбувається і з рідким гелієм - з пониженням тиску його температура кипіння знижується.



4. Ідеальний провідник і надпровідник. Ефект Мейснера.

Для аналізу поведінки ідеального провідника в магнітному полі розглянемо контур, поміщений в поле з індукцією Ba (рис.4, а). Якщо площа, обмежена кільцем рівна А, то потік, що пронизує кільце, можна описати по формулі

.

При зміні прикладеного поля в кільці індукуються струми. Вони направлені так, що створений ними усередині кільця потік прагне компенсувати зміну потоку, викликану зміною прикладеного поля. Між індукційним струмом і електрорушійною силою (-АdBа/dt) справедливо наступне співвідношення:

,

де R і L - повний опір і індуктивність контура.

У звичайному кільці наведені струми із-за кінцевого опору швидко затухають і потік, пронизливий контур приймає нове значення. У разі ідеальної провідності R=0, останнє співвідношення приймає вигляд

або

Li+ABa=const.

Таким чином, повний магнітний потік через контур без опору (Li+ABa) не може змінитися. Навіть при зниженні зовнішнього поля до нуля, внутрішній потік зберігається завдяки циркулюючому в замкнутому кільці індукованого незгасаючого струму.

Все вищевикладене відносилося до умови, при якій кільце, знаходячись в прикладеному магнітному полі, охолоджувалося нижче за температуру Тк, при якій зникав опір. Якщо ж контур спочатку охолодити, а потім прикласти зовні поле, то результуючий внутрішній потік залишиться рівним нулю не дивлячись на наявність зовнішнього поля.

Рис. 4. а) б)

Розглянемо поведінку ідеального провідника в магнітному полі. Припустимо, що зразок з ідеального провідника проходить наступні стадії: спочатку охолоджується нижче за деяку температуру, коли падає опір, а потім накладається магнітне поле. Опір по будь-якому довільно вибраному замкнутому контуру усередині металу рівний нулю. Отже, величина магнітного потоку, ув'язненого усередині цього кільця, залишається рівною нулю. Довільність вибору контура дозволяє укласти, що магнітний потік рівний нулю за всім обсягом зразка. Це пов'язано з індукованими магнітним полем незгасаючими струмами по поверхні зразка. Вони створюють магнітний потік, щільність якого Вi всюди усередині металу точно рівна по величині і протилежна по щільності потоку прикладеного магнітного поля Вa. Таким чином, виникає ситуація, коли поверхневі струми, часто звані що екранують, перешкоджають проникненню в зразок магнітного потоку прикладеного поля. Якщо усередині речовини, що знаходиться в зовнішньому полі, магнітний потік рівний нулю, то говорять, що він проявляє ідеальний діамагнетизм. При зниженні щільності прикладеного поля до нуля зразок залишається в своєму ненамагніченому стані.

У іншому випадку, коли магнітне поле прикладене до зразка, що знаходиться вище за перехідну температуру, кінцева картина помітно зміниться. Для більшості металів ( окрім феромагнетиків ) значення відносної магнітної проникності близьке до одиниці. Тому щільність магнітного потоку усередині зразка практично рівна щільності потоку прикладеного поля. Зникнення електроопору після охолоджування не робить впливу на намагніченість, і розподіл магнітного потоку не міняється. Якщо тепер понизити прикладене поле до нуля, то щільність магнітного потоку усередині надпровідника не може мінятися, на поверхні зразка виникають незгасаючі струми, що підтримують усередині магнітний потік. В результаті зразок залишається весь час намагніченим. Таким чином, намагніченість ідеального провідника залежить від послідовності зміни зовнішніх умов.

У перебіг майже чверті століття вважали, що єдиною характеристичною властивістю надпровідного стану є відсутність електричного опору. Це означає, що надпровідник в магнітному полі поводитиметься так, як описано вищим. Проте такий підхід приводить до неоднозначного опису надпровідної фази.

Експеримент, що ілюструє перехід з надпровідного стану в звичайне продемонстрував, що надпровідники - щось більше, ніж ідеальні провідники. Вони володіють додатковою властивістю, відсутнім від металу, просто позбавленого опору: метал в надпровідному стані ніколи не дозволяє магнітному потоку проникнути всередину, завжди Вi=0.

Коли надпровідник охолоджується в слабкому магнітному полі, то при температурі переходу на його поверхні виникає незгасаючий струм, циркуляція якого перетворює внутрішній магнітний потік в нуль. Це явище, що полягає в тому, що усередині надпровідника щільність магнітного потоку завжди, навіть в зовнішньому магнітному полі, рівна нулю, називається ефектом Мейснера.

Ефект виштовхування магнітного поля з надпровідника можна пояснити на основі уявлень про намагніченість. Якщо екрануючі струми, повністю компенсуючи зовнішнє магнітне поле, повідомляють зразку магнітний момент m, то намагніченість M виражається співвідношенням

,

де V - об'єм зразка. Можна говорити про те, що екрануючі струми приводять до появи намагніченості, відповідної намагніченості ідеального феромагнетика з магнітною сприйнятливістю, рівною мінус одиниці.



5.Надпровідники першого та другого роду.

Надпровідники першого роду.

Проаналізуємо протікання струму по провіднику круглого поперечного перерізу, що знаходиться в надпровідному стані. У відмінності від екрануючого струму, що виникає при накладанні магнітного поля, струм від зовнішнього джерела називатимемо транспортним. Якби цей струм протікав усередині надпровідника, він створював би в його об'ємі магнітне поле, що протирічить ефекту Мейснера. Отже, струм, що протікає повинен бути обмежений тонким шаром біля поверхні, в який проникає магнітне поле. Товщина цього поверхневого шару рівна глибині проникнення Δ.

Транспортний струм, що протікає по надпровіднику, створюватиме магнітне поле. Між щільністю струму і магнітним полем існує строгий зв'язок, який означає, що критичному полю відповідає певна критична щільність струму (правило Сильсбі). Причому абсолютно байдуже, про який струм йде мова - транспортний, або що екранує. Для провідника з круглим поперечним перерізом магнітне поле на поверхні В0 і сумарний струм I зв'язані відношенням

,

де R - радіус поперечного переріру провідника.

З даного рівняння виходить, що критичний струм має таку ж залежність від температури, як і критичне магнітне поле. Розрахунок показує, що, наприклад, для олов'яного дроту радіусом 0,5 мм критична сила струму при Т=0 До складає 75 А .

За допомогою правила Сильсбі можна визначити також критичні струми для надпровідників в зовнішньому магнітному полі. Для цього необхідно скласти зовнішнє магнітне поле з полем транспортного струму на поверхні. Щільність струму досягає результуюче значення, коли це результуюче поле Врез стає критичним. Для дроту радіусом R в магнітному полі Bа, перпендикулярному її осі:

.

Тут значення a на твірній циліндра отримано для коефіцієнта розмагнічування uм=1/2.

Залежність критичного струму від зовнішнього поля Вa можна визначити з рівняння:

­­ .

Графік її представлений на рис.5.

Рис. 5. Залежність критичного струму від зовнішнього магнітного поля, перпендикулярного дроту.

Процес порушення надпровідності в масивних зразках досягши критичної сили струму відбувається з утворенням проміжного стану. Структура його для циліндрового зразка представлена на рис.6. При включенні зовнішнього магнітного поля відбувається його накладення на кругове поле струму, внаслідок чого геометрія міжфазних меж між надпровідними і нормальними областями значно ускладнюється.

В кінці розмови про надпровідники першого роду відзначимо, що низькі критичні параметри роблять практично неможливим їх технічне використання.

Рис. 6. Структура проміжного стану дроту, що несе критичний струм.

Надпровідники другого роду.

Принципова відмінність надпровідника другого роду від надпровідника першого роду починає виявлятися в той момент, коли магнітне поле на поверхні досягає значення Вc1 . При цьому надпровідник переходить в змішаний стан. Проникнення магнітного поля в об'єм надпровідника приводить до того, що в цих умовах транспортний струм розподіляється рівномірно по всьому перетину, не зайнятому вихровими нитками. Таким чином, на відміну від надпровідників першого роду, в яких струм протікає по тонкому поверхневому шару, в надпровіднику другого роду транспортний струм протікає у всьому об'ємі.

Відомо, що між струмом і магнітним полем завжди існує сила взаємодії, яку називають силою Лоренса. Стосовно змішаного стану надпровідника ця сила діятиме між абрикосовскими вихорами і транспортним струмом. Можливості транспортного перерозподілу струму обмежені кінцевими розмірами провідника, і, отже, під дією сили Лоренса вихрові нитки повинні переміщатися. Для опису особливостей поведінки надпровідників в магнітному полі проаналізуємо термодинаміку утворення поверхонь розділу між надпровідною і нормальною фазами. У нормальній області ВBc, у надпровідній спадає до нуля на глибині порядку ∆ (рис.7). У нормальному стані щільність надпровідних електронів рівна нулю, в той час, як в надпровіднику вона має певну величину ns(Т). На деякій відстані від межі щільність надпровідних електронів по порядку величини досягає значення, рівного ns(Т). Характеристичний параметр називають довжиною когерентності, залежність її від температури визначається формулою

, де 0 залежить від властивостей надпровідника і складає по порядку величини 10-6 - 10-8 м.

Рис. 7. Розподіл магнітного потоку і густини надпровідних електронів поблизу фазової межі.



Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее