151127 (Экстремальные состояния вещества), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Экстремальные состояния вещества", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151127"

Текст 2 страницы из документа "151127"

В сильных полях, особенно в разреженной плазме, энергия приобретаемая электронами от поля оказывается существенно больше энергии ионов Te>>T+=T. Такое состояние называется неравновесным, а плазма неравновесной.

Рассмотрим теперь пространственный масштаб разделения зарядов. В некотором объёме плазмы с характерным размером d, который называется дебаевским радиусом экранирования, потенциальная и кинетическая энергии заряженной частицы равны между собой.

В равновесной плазме, когда Te=T+=T:

 

,

в резко неравновесной плазме, когда Te>>T+=T

 

,

где: Te - температура электронов; T+ - температура ионов; T- температура газа; n - плотность электронов и ионов; e - заряд электрона; k - постоянная Больцмана.

Дебаевский радиус характеризует расстояния, на которых возможны сильные разделения зарядов в плазме. Например, при Te =1 эВ и n=1014 1/м3 дебаевский радиус d = 5,210-4м.

Согласно определению Ленгмюра, ионизированный газ называется плазмой, если дебаевский радиус экранирования d намного меньше других характерных расстояний области занятой этим газом.

Временным параметром определяющим разделение зарядов в плазме является угловая частота гармонических колебаний заряженных частиц плазмы. Дело в том, что перемещение заряженных частиц в плазме приводит к появлению электростатических сил стремящихся вернуть частицы в первоначальное положение. Движение таких частиц представляет собой гармонические колебания вокруг положения равновесия:

=Asin(pt+0) ,

где A - амплитуда колебаний; 0 - начальная фаза колебаний; p- угловая частота, равная

Таким образом, плазменная частота - это резонансная или характеристическая частота системы образующих плазму заряженных частиц, зависящих от их массы. Время отдельного микроскопического взаимодействия не может превысить период плазменных колебаний, т.е. p представляет собой нижний предел частоты микроскопического взаимодействия заряженных частиц.

Степень ионизации газа в зависимости от условий его существования может изменяться в широких пределах. Столб тлеющего разряда (например, в газоразрядных лампах) - это слабоионизированный газ со степенью ионизации порядка 10-8-10-6. Положительный столб дугового разряда при высоких (порядка атмосферного) давлениях газа имеет степень ионизации порядка 10-3-10-1.

Помимо степени ионизации ионизированный газ характеризуется концентрацией электронов, которая в зависимости от характера ионизационных процессов и плотности газа также изменяется в очень широких пределах. Так, концентрация электронов в канале молнии может достигать 10-102 13, в то время как в ионосфере 1011 1/м3.

 

2.2. Сравнительный анализ различных состояний вещества

Пути, по которым можно подойти к рассмотрению нижней границы области экстремальных состояний, удобнее всего определить по хорошо знакомой из школьных курсов физики и химии диаграмме фаз (см. рис. 3).

От тройной точки, в которой существуют твердая, жидкая и газообразная фазы вещества, на три стороны расходятся три линии. Одна из них, разграничивающая твердую и газообразную фазы, уходит к абсолютному нулю. Другая, отделяющая твердую фазу от жидкой, взмывает вверх. Можно двинуться к высоким давлениям вдоль нее, но мы выберем третью линию - границу "жидкость - газ".


Рис. 3. Фазовая диаграмма для области относительно малых давлений и температур. При условиях, соответствующих точкам пограничных линий, фазы находятся в равновесии; при условиях, соответствующих тройной точке, система состоит из твердой, жидкой и газообразной фазы одновременно. В критической точке жидкость и пар становятся тождественными по своим физическим свойствам; за этой точкой эти две фазы неразличимы.

Рассмотрим границу «жидкость-газ». Она обрывается в критической точке, где теряется различие между жидкостью и газом. С дальнейшим ростом температуры пропадает нужда и в самих этих терминах: вещество переходит в свое четвертое состояние - плазму.

Это слово и ляжет первым обозначением на ту часть области экстремальных состояний, которая принадлежит к вертикальному участку ее нижней границы.

Однако, нелогично было бы предполагать, чтобы свойства плазмы были совершенно одинаковыми на обоих концах столь протяженной полосы.

Вспомним, чем отличаются друг от друга более привычные для нас состояния веществ - твердое, жидкое и газообразное (см. рис. 4).

Твердое тело - это идеальный порядок. Выяснив расположение нескольких атомов в каком-либо участке кристалла, можно предсказать местоположение сколь угодно далеких их соседей по кристаллической решетке. Ошибка в определении координат каждого атома не превысит амплитуды его хаотических колебаний близ положения равновесия, обусловленных температурой.

Газ - это "идеальный" беспорядок. Каждый атом газа движется совершенно независимо от прочих, временами сталкиваясь с ними.

Жидкость - это нечто среднее между порядком и беспорядком. В кругу своих близких соседей каждый атом занимает определенное положение и колеблется около него, как в кристалле. Но такой порядок физики не зря называют ближним: дальние соседи движутся друг относительно друга совершенно хаотически, как атомы газа, - время от времени каждый атом меняет своих соседей.


Рис. 4. Схематическое изображение траекторий движения частиц в газе (а), жидкости (б) и кристалле (в), при условии, что положения частиц во всех фазах фиксируются через равные промежутки времени. На двух последних рисунках точками обозначены атомы-соседи.

На ЭВМ удалось рассчитать движение частиц в плазме при больших давлениях. Оказалось, что частицы ведут себя совсем как жидкости: то и дело скачками меняя свое положение в пространстве и на некоторое время оставаясь верными тому ближнему порядку, который связывает их с соседями.

Плазму, для которой характерно такое поведение частиц, называют жидкоподобной. Как уже говорилось, плазма становится такой при больших давлениях. Близ оси температур она похожа по свойствам на идеальный газ и называется идеальной. (Границы, позволяющие различать агрегатные состояния вещества на рисунке обозначены белыми линиями, разделяющими цветные поля.)

Зона, где применим термин "жидкоподобная плазма", на диаграмме прилегает к тому месту, где нижняя граница области экстремальных состояний поворачивает к оси давлений. Теперь слегка изменим направление анализа: не прекращая наращивать давление, несколько снизим температуру.

С падением температуры уменьшится скорость хаотического движения частиц, рост давления заставит оголенные ядра теснее сблизиться друг с другом. Роль кулоновского взаимодействия между положительно заряженными ядрами возрастет. По этой причине ядрам будет энергетически выгодно выстроиться в определенном порядке, образовать кристаллическую решетку.

Итак, мы пришли к линии раздела твердой и жидкой фаз. Рассмотрим теперь понятие и явление плавления.

Известно, что в привычных земных условиях плавление обычно вызывается повышением температуры. С ее ростом увеличивается амплитуда шатаний атомов близ узловых точек кристаллической решетки; она становится сравнимой с расстоянием между узлами, а когда составит от этого расстояния примерно четверть (к такой цифре приводит теоретическая оценка; в нормальных комнатных условиях оценку подтверждают эксперименты с нормальными металлами), начнется переход в жидкую фазу.

Можно провести то же рассуждение в обратном порядке: чем ниже температура, тем меньше амплитуда хаотических колебаний атомов, тем точнее определяется их положение в узлах решетки.

Однако обратный ход нашего рассуждения сдерживается закономерностями квантовой механики. В последней фразе предыдущего абзаца можно усмотреть покушение на один из основных ее принципов - принцип неопределенности. Согласно законам квантовой механики, нельзя определить одновременно со сколь угодно высокой точностью и положение и скорость частицы, и, следовательно, нельзя говорить о том, что частица замирает с нулевой (точно определенной!) скоростью в каком-либо (строго определенном!) положении равновесия. Так что даже при температуре, стремящейся к абсолютному нулю, атомы кристалла будут совершать колебания близ положений равновесия - нулевые колебания, как принято их называть в отличие от тепловых.

В соответствии с тем же принципом неопределенности амплитуда нулевых колебаний становится тем больше, чем сильнее стеснены движения атома, чем строже задано положение равновесия. Давление как раз и служит таким стесняющим обстоятельством. Растет давление - растет и амплитуда нулевых колебаний. И вот она становится сравнимой со все уменьшающимся расстоянием между узлами кристаллической решетки. При температуре, близкой к абсолютному нулю, наступает момент холодного плавления твердого тела.

Таким образом, существуют предельные значения температуры, плотности и давления, выше которых кристаллическое состояние невозможно, и, чтобы убедиться в этом, можно было и не отправляться в область экстремальных состояний: именно квантовым эффектом холодного плавления объясняется существование жидкого гелия при низких температурах и атмосферном давлении.

Впрочем, многие вопросы, связанные с холодным плавлением, до сих пор остаются открытыми.

Любопытным вопросом являются процессы, которым подвергаются электроны в области экстремальных состояний (до сих пор, применительно к атомам, речь шла в основном о ядрах). За нижней ее границей электроны отрываются от ядер, пополняя собой самостоятельную электронную компоненту вещества.

О ее структуре рассказывают тонкие черные штрихи, прочеркивающие пестрое поле диаграммы. Линия, идущая углом вдоль нижней границы, выше и правее ее, указывает условия, в которых коллективизируется большинство электронов, следующая линия - условия, в которых электроны обобществлены полностью, следующая за ней - условия, при которых скорости электронов приближаются к скорости света: температура и давление делают то, ради чего в земных условиях строятся ускорители заряженных частиц.

По скругленным вершинам трех этих ломаных линий и дальше вправо и вверх идет еще одна. Правее и ниже ее электроны можно рассматривать как классический газ. Левее и выше лежит так называемая область вырождения - тут вступает в силу знаменитый принцип запрета Паули: если какие-либо электроны в данной порции вещества находятся в одном и том же состоянии с одинаковой энергией, то таких электронов может быть только два. Прибегнув к физическому термину, скажем так: в каждом состоянии может находиться лишь пара электронов, при этом их спины направлены в противоположные стороны.

Чем больше объем тела, чем больше в нем электронов, тем гуще сетка энергетических уровней - ведь каждой паре электронов нужно отвести свой уровень, а энергия частиц, очевидно, ограничена.

А если уменьшить объем тела, например, сжав его? Концентрация энергии в веществе повысится, каждый электрон получит дополнительную энергию, стопка уровней приподнимется, зазоры между ними расширятся. Повышение энергии всегда требует приложения определенной силы - тело будет сопротивляться сжатию. Если же давление снять, энергетические уровни сползут вниз, вернутся в прежнее низшее положение, соответствующее большему объему (см. рис. 5).


Рис. 5. Распределение уровней энергии, на которых располагаются электроны кристалла при меньшем (слева) и большем (справа) давлении.

За этим рассуждением нетрудно увидеть описание общеизвестного механического феномена - упругости твердых тел. В его основе лежит принцип Паули, которому подчиняются электроны твердого тела, будь то кристалл кварца или стальная пластинка.

Несколько слов необходимо сказать о точках, которые стоят близ границ раздела "кристалл - жидкоподобная плазма - идеальная плазма". Эти границы, как уже говорилось, обозначены белыми линиями. Среди них есть сплошные и пунктирные. Такое разнообразие объясняется тем, что единой для всех элементов диаграммы фаз вычертить нельзя.

Сплошные линии соответствуют углероду. По ним можно судить, что происходит, к примеру, в сердцевине белого карлика, состоящей в основном из углерода. Здесь звездное вещество близко к кристаллизации.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее