151032 (Технологія одержання квантових точок), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Технологія одержання квантових точок", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "151032"

Текст 3 страницы из документа "151032"

має таку ж саму постійну решітки, як і , але ширшу заборонену зону, значення якої залежить від вмісту алюмінію у шарі. Таким чином, електрони у шарі містяться у цьому шарі (обмежені цим шаром) і формують двовимірний газ електронів [9].

Системи квантових точок можуть бути генеровані у поздовжньому або вертикальному оточенні, як показано на рис. 2.1. У поздовжній геометрії (двовимірний електронний газ) локально електростатично збіднюється при прикладенні негативної напруги на електроди, нанесені на поверхню кристалу. Можна зрозуміти цей ефект з наступних міркувань. Нехай ми прикладаємо негативну напругу на металеві електроди над двовимірним газом електронів. Завдяки електростатичній взаємодії електрони будуть відштовхуватися електричним полем електродів, тому область нижче електродів буде збіднена електронами. Область, збіднена зарядами, поводиться як діелектрик. Таким чином, шляхом прикладання електричного поля до металевих електродів відповідної форми можливо створити острівці зарядів, ізольовані від решти . Якщо острівок у межах достатньо малий, він поводиться як квантова точка. У вертикальній геометрії малий вертикальний стовпчик ізольований шляхом травлення гетероструктури навколо нього. У такому оточенні носії заряду знову стають обмеженими у всіх трьох напрямках.

Більшість досліджень явища переносу електронів у квантових точках були виконані на вищезгаданих двох типах квантових точок. Поздовжнє оточення дає відносно високу ступінь свободи для конструювання структури, оскільки вона буде визначатися вибором геометрії. Крім того, можливо виготовити і вивчити „штучні молекули”, створені кількома зв’язаними квантовими точками. У вертикальному оточенні (геометрії) можна виготовити структури з дуже малою кількістю електронів [6].

Важливою перевагою літографічно отриманих квантових точок є їх прямий електричний зв’язок з „макросвітом”. Процеси виготовлення подібні до тих, що використовуються при виготовленні чіпів, і в принципі такі структури можуть бути вбудовані у звичайні електричні схеми. Але геометрія цих квантових точок обмежена звичайними розмірами і роздільною здатністю літографічних методів. Навіть з використанням електронно-променевої літографії для виготовлення квантових точок неможливо контролювати їх розмір з нанометровою точністю. Літографічно виготовлені квантові точки мають розміри звичайно більші, ніж 10 нм, отже, можна досягти тільки низьких поздовжніх енергій заключення [10].

Рис. 3.3.

Три типи квантових точок (рис.3) а1 - літографічно отримана квантова точка у поздовжньому оточенні може бути сформована електростатичним збідненням двовимірного газу електронів ( , показано темно-сірим) через електроди затворів. формується, як правило, на 20-100 нм нижче поверхні напівпровідникової гетероструктури (зазвичай ). Прикладання негативної напруги до металевих затворів на поверхні гетероструктури збіднює

нижче затворів (показано світло-сірим) і вирізає малий острівок електронів з . Електрони можуть тунелювати в та з острівка. Електричний контакт до реалізується через омічні контакти (не наведені на рисунку); а2 - вертикальну квантову точку можна сформовати у гетероструктурі з подвійним бар’єром. З гетероструктури

витравлюється вузький стовпчик (колона). Шари (світло-сірі) формують тунельні бар’єри, що ізолюють центральну область від контактної області. Ця центральна область поводиться як квантова точка (показана темно-сірим). Металеві контакти нанесені зверху на стовпчику та знизу гетероструктури; б - самоорганізовані квантові точки: при використанні молекулярно-променевої епітаксії (МПЕ). Ріст (темно-сіре) на (світло-сіре) спочатку призводить до утворення протяжного шару (змочувальний шар) і потім до утворення малих острівців . Одиничні електрони або електрон-діркові пари (екситони) можуть бути обмежені цими квантовими точками як електрично, так і оптично; в - колоїдні квантові точки - колоїдні частинки, що мають діаметр кілька нанометрів, формуються за допомогою мокрої хімії і можуть бути отримані для більшості напівпровідників типу та декількох типів напівпровідників. Поверхня колоїдних квантових точок покрита шаром молекул суфрактанта, який запобігає агрегації частинок [1].

2.2 Епітаксіальний метод

Проривом в області епітаксіально вирощених наноструктур було відкриття режимів росту, які сприяли утворенню напівпровідникових острівків нанометрового розміру на відповідних підкладках. Ці острівки, що поводяться як квантові точки, отримуються епітаксіальним ростом тонкого шару матеріалу з малим значенням забороненої зони на матеріалі з більш високим значенням забороненої зони при використанні методів МПЕ ( ) або . На контактах існує значне розузгодження решіток (1-8%), як у випадку на та на . У процесі росту спочатку формується напружена плівка, яку називають „змочувальним шаром”. Максимальна товщина цього шару пов’язана з різницею між сталими гратки двох матеріалів. Після цієї критичної товщини спостерігається перехід у режимі росту із спонтанним утворенням нанометрових острівків (режим Странского-Крастанова), що призводить до часткового зняття напруги. Якщо ріст не переривати на цьому етапі, то формуються дислокації неузгодження через те, що енергія утворення цих дефектів стає меншою, ніж пружна енергія, акумульована у напруженій плівці. Утворення дислокацій в епішарах з високою напруженістю (коли неузгодження решіток є порядку 10% або більше) перед утворенням острівків обмежує область можливих матеріалів підкладок при виготовленні острівків. Форму острівців можна контролювати умовами росту. Звичайно острівці мають форму зрізаної піраміди, але можливо формувати кільцеподібні квантові точки. Кінцевий етап полягає у рості (нарощуванні) на вершину острівців декількох шарів матеріалу підкладки так, що точки повністю занурені і границі розділу пасивовані. Співвідношення заборонених зон створює утримуючий потенціал для носіїв заряду, що акумулюються всередині квантових точок. Крім того, поля напруги поблизу границь поділу острівок-підкладка завдяки розузгодженню граток між двома матеріалами утворюють потенціали, які модифікують заборонену зону квантових точок на дні острівця. Дірки імовірніше будуть локалізуватися у цій області, оскільки вони важчі за електрони [7].

Самоорганізовані квантові точки можуть мати діаметр до кількох нанометрів, і тому у таких системах можуть спостерігатися сильно виражені квантові ефекти. Самоорганізовані квантові точки досліджувалися переважно з використанням оптичної або ємнісної спектроскопії у режимі, коли вони містять малу кількість носіїв заряду. На вимірювання ансамблів суттєво впливає неоднорідне уширення спектроскопічних особливостей. Але останнім часом стало можливим досліджувати кілька самоорганізованих квантових точок або навіть одиничні квантові точки шляхом зменшення числа квантових точок за допомогою мезотравлення або при використанні методу конфокальної мікроскопії. Фотолюмінесценція з окремої самоорганізованої квантової точки є високоефективним процесом, що характеризується декількома вузькими емісійними лініями, пов’язаними з різними екситонними станами у точках, і нагадує емісію з атомів. Як вже згадувалося для випадку літографічно отриманих квантових точок, можна провести багато паралелей між атомами та квантовими точками. По цих причинах квантові точки часто називають також штучними атомами. Сучасні дослідження зосереджені на впорядкування та розміщенні квантових точок, а також на проблемі зменшення їх розподілу по розмірах. На відміну від літографічно отриманих квантових точок виготовити електричний контакт до самоорганізованих точок є серйозною проблемою, тому найширше вони можуть застосовуватися в оптиці. Однією з головних цілей досліджень самоорганізованих квантових точок є виготовлення некласичних джерел світла з одиничних точок. Іншим можливим застосуванням є оптичні пристрої пам’яті [6].

2.3 Колоїдний метод

Колоїдні квантові точки є суттєво відмінними від систем, що були описані вище, оскільки вони хімічно синтезуються з використанням мокрої хімії і є вільними наночастинками або нанокристалами, вирощеними у розчині. Колоїдні квантові точки є підгрупою більш широкого класу матеріалів, які можуть бути синтезовані на наномасштабному рівні з використанням мокрих хімічних методів. При виготовленні колоїдних нанокристалів реакційною камерою є реактор, який містить суміш сполук, що контролюють нуклеацію та ріст. У загальному синтезі квантових точок у розчині кожний з видів атомів, що буде частиною нанокристалу, вводиться у реактор у формі прекурсору. Прекурсор є молекула або комплекс, що містить один або більше видів атомів, необхідних для вирощування нанокристалів. Як тільки прекурсори вводяться у реактивну камеру, вони розкладаються і формують нові реактивні одиниці (мономери), які викликають нуклеацію та ріст нанокристалів. Енергію, потрібну для розкладу прекурсорів, забезпечує рідина у реакторі, або її забезпечують шляхом термічних зіткнень, або шляхом хімічної реакції між рідким середовищем та прекурсорами, або комбінацією цих двох механізмів [7].

Ключовим параметром у контрольованому рості колоїдних нанокристалів є присутність одного або більше молекулярних видів у реакторі, тут широко позначених як „суфрактанти”. Суфрактант - це молекула, яка динамічно адсорбується до поверхні зростаючої квантової точки при реакційних умовах. Він має бути достатньо рухливим, щоб забезпечити доступ для мономерних одиниць, і в той же час достатньо стабільним для запобігання агрегації нанокристалів. Вибір суфрактантів змінюється під конкретний випадок, молекула, яка занадто сильно зв’язується з поверхнею квантової точки, не підходить, оскільки вона не дозволить нанокристалу рости. З іншого боку, слабокоординована молекула буде давати великі частинки або агрегати. Деякіми прикладами суфрактантів є алкілтіоли, фосфіни, окисли фосфінів, фосфати, фосфонати, аміди або аміни, карбоксилові кислоти та ін. Якщо вирощування нанокристалів відбувається при високих температурах (наприклад, при 200-400 С), тоді молекули суфрактанта повинні бути стабільними при таких умовах.

При низьких температурах, або коли ріст припиняється, суфрактанти сильніше пов’язані з поверхнею нанокристалів і забезпечують їх розчинність у широкому наборі розчинів. Це покриття забезпечує гнучкість синтезу, тому що воно може обмінюватись на інше покриття з органічних молекул, які мають різні функціональні групи або полярність. На додаток, суфрактанти можуть бути тимчасово видалені і може бути нарощений епітаксіальний шар іншого матеріалу з різними електронними, оптичними або магнітними властивостями на первинному нанокристалі.

Шляхом контролю суміші молекул суфрактанту, що присутні в процесі генерації, та росту квантових точок можливий контроль їх розміру та форми. Оскільки колоїдні нанокристали дисперговані у розчині, вони не зв’язані з будь-якою твердою основою, як у випадку двох інших описаних систем квантових точок.

Таким чином, вони можуть бути виготовлені у великих кількостях у реакційній камері і пізніше нанесені (переведені) на потрібний об’єкт або підкладку. Можливо, наприклад, покривати їх поверхню біологічними молекулами, такими як протеїни або олігонуклеотіди. Багато біологічних молекул виконують задачі молекулярного розпізнавання з дуже високою точністю. Це означає, що молекули лігандів прив’язуються з дуже високою селективністю до певних рецепторних молекул. Якщо колоїдна квантова точка відмічена молекулами ліганду, вона специфічно зв’язується по всіх позиціях, де присутня рецепторна молекула.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее