150580 (Получение арсенида галлия)

2016-07-30СтудИзба

Описание файла

Документ из архива "Получение арсенида галлия", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150580"

Текст из документа "150580"

Московский Государственный Открытый Университет.

Факультет: "Информатики и радиоэлектроники"

Курсовая работа на тему:

Получение Арсенида Галлия

Выполнил:

Михайлов Д. П

Шифр: 608859

Специальность: 200300

2009 г.

Содержание

Арсени́д га́ллия (GaAs)

Металлургические свойства GaAs

Выращивание кристаллов GaAs

Направленная кристаллизация

Зонная плавка

Метод Чохральского

Эпитаксиальные пленки арсенида галлия

Заключение

Используемая литература


Арсени́д га́ллия (GaAs)

Химическое соединение галлия и мышьяка. Важный полупроводник, третий по масштабам использования в промышленности после кремния и германия. Используется для создания сверхвысокочастотных интегральных схем, светодиодов, лазерных диодов, диодов Ганна, туннельных диодов, фотоприёмников и детекторов ядерных излучений.

Некоторые электронные свойства GaAs превосходят свойства кремния. Арсенид галлия обладает более высокой подвижностью электронов, которая позволяет приборам работать на частотах до 250 ГГц.

Полупроводниковые приборы на основе GaAs генерируют меньше шума, чем кремниевые приборы на той же частоте. Из-за более высокой напряженности электрического поля пробоя в GaAs по сравнению с Si приборы из арсенида галлия могут работать при большей мощности. Эти свойства делают GaAs широко используемым в полупроводниковых лазерах, некоторых радарных системах. Полупроводниковые приборы на основе арсенида галлия имеют более высокую радиационную стойкость, чем кремниевые, что обусловливает их использование в условиях радиационного излучения (например, в солнечных батареях, работающих в космосе).

По физическим характеристикам GaAs - более хрупкий и менее теплопроводный материал, чем кремний. Подложки из арсенида галлия гораздо сложнее для изготовления и примерно впятеро дороже, чем кремниевые, что ограничивает применение этого материала.

Общие свойства:

Общие.

Название

Арсени́д га́ллия

Химическая формула

GaAs

Внешний вид

Тёмно-серые кубические кристаллы

Структура

Молекулярная масса

144.64 ат. ед.

Постоянная решётки

0.56533 нм

Кристаллическая структура

цинковой обманки

Физические

Агрегатное состояние

при н. у.

твёрдое

Точка плавления при н. у.

1513 K

Электронные

Ширина запрещённой зоны при 300 K

1.424 эВ

Электроны, эффективная масса

0.067 me

Лёгкие дырки,

эффективная масса

0.082 me

Тяжёлые дырки,

эффективная масса

0.45 me

Подвижность электронов при 300 K

9200 см²/ (В·с)

Подвижность дырок при 300 K

400 см²/ (В·с)

Химическая связь. Химическая связь в полупроводниковых соединениях типа АшВv по своей природе является промежуточной между ионной и ковалентной. В случае ковалентной связи каждый атом мышьяка должен отдать один электрон атома галлия для образования атомов с четырьмя валентными электронами. Чисто ионная связь требует, чтобы каждый атом галлия отдал три электрона атомам мышьяка с образованием ионов, удерживаемых в кристалле исключительно электростатическими силами. Нейтральная связь требует сохранения всеми атомами своих валентных электронов. Одним из критериев передачи заряда является общий заряд, связанный с каждым атомом.

Структура. Арсенид галлия имеет структуру кристалла сфалерита (цинковой обманки). Структура сфалерита может рассматриваться как комбинация двух вставленных одна в другую кубических гранецентрированных решеток, смещенных относительно друг друга на четверть диагонали куба и состоящих из одного сорта атомов каждая.

Валентная зона в арсениде галлия состоит из зоны тяжелых дырок, зоны легких дырок и из зоны обусловленной спин-орбитальным взаимодействием.

Эффективная масса носителей заряда и их взаимодействие с решеткой определяют подвижность электронов и дырок. Связь в решетке арсенида галлия сильнее чем, в элементарных полупроводниках, поскольку, помимо ковалентной связи, в них наблюдается небольшая доля ионной связи. Это приводит к ослаблению взаимодействия между носителями заряда и решеткой и к росту подвижности. Однако высокая подвижность электронов в арсениде галлия в первую очередь обусловлена малым значением их эффективной массы в нижней зоне проводимости.

Примеси в GaAs. Примеси, введенные в GaAs, могут занимать места Ga или As, образуя растворы замещения, либо входить в решетку парами, замещая соседние разноименные атомы, либо внедряться в междуузлие. Значительное влияние на поведение примесей в кристаллах GaAs оказывает взаимодействие атомов примеси с точечными дефектами, дислокациями и другими дефектами решетки.

Металлургические свойства GaAs

Благоприятное сочетание многих физических свойств делает относительно высокие концентрации остаточных примесей в монокристаллах арсенида галлия весьма затрудняют, определение коэффициентов распределения, коэффициентов диффузии и предельных растворимостей примесей. Обычно нелегированные монокристаллы GaAs характеризуются электронной электропроводностью и низким удельным сопротивлением. Особое внимание уделяется примесным атомам кремния. Легируя арсенид галлия радиоактивными атомами кремния, удалось установить, что до концентрации порядка 1017 см-3 все атомы кремния являются донорами с малой энергией ионизации, т.е. заменяют атомы галлия. При более высоких концентрациях часть атомов Si занимает узлы As и проявляет Акцепторные свойства в результате чего удельное сопротивление кристалла возрастает. Аналогичные результаты были получены для примеси германия.

При диффузионном легировании GaAs литием удельное сопротивление кристалла n-типа возрастает до десятка омсм. В результате термообработки при высоких температурах удельное сопротивление снижается до 0,2 омсм и кристалл становится p-типа. Предполагается, что литий может входить в решетку по междоузлиям, так и путем замещения атомов галлия. В междоузлиях литий является донором (Lii′), а в узлах - акцептором (LiGa′′). Эти два вида дефектов могут образовывать комплекс Lii′ LiGa′′, обладающий акцепторными свойствами.

Рис. 1.1 Диаграмма плавкости (X - T) арсенида галлия.

При термообработке свободные межузельные донорные атомы лития диффундируют к поверхности или дислокациям и там выпадают из раствора; таким образом, в кристалле остаются только акцепторные комплексы Lii′ LiGa′′. Обычно для легирования используют следующие примеси: цинк как акцептор и селен как донор. Поскольку концентрация электронов в легированных монокристаллах превышает 1016 см-3, концентрация легирующих примесей довольно высока: 1017-1019 атсм-3. Во многих случаях при выращивании монокристаллов GaAs методами Бриджмена, бестигельной зонной плавкой и из паровой фазы получали полуизолирующие кристаллы, в которых концентрация носителей составляет менее 109 см3. Свойства полуизолирующих кристаллов определяются присутствием примесей, образующих глубоко лежащие уровни, которые захватывают электроны и дырки, создаваемые мелкими донорными и акцепторными уровнями. Природа глубоких уровней точно не установлена; предполагается, что они создаются кислородом и (или) медью.

Диаграмма плавкости (T - X) арсенида галлия представлена на рис.2.1 Более подробная кривая ликвидуса, характеризующая растворимость мышьяка в жидком галлии в зависимости от температуры, представлена на рис.2.3 При нагреве кристаллы арсенида галлия разлагаются на жидкий галлий и газообразный мышьяк (молекулы As4). Очень медленный процесс диссоциации начинается примерно с 600° С. Образовавшаяся на поверхности кристалла пленка жидкого галлия находясь в контакте с твердым кристаллом GaAs и паровой фазой, стремится образовать раствор с мышьяком, состав которого при любой температуре определяется кривой ликвидуса рис.2.2 Если нагрев кристалла происходит в герметичной, равномерно нагретой ампуле, то между всеми тремя фазами устанавливается равновесие, для достижения которого происходит растворение кристалла в жидком галлии. При проведении всех технологических операций необходимо

знать температурную зависимость давления паров мышьяка над жидкими растворами галлий - мышьяк.

Экспериментальные определения давления паров мышьяка как над его растворами в галлии, так и над чистым соединением осложняются тем, что паровая фаза состоит не только из молекул As4, но и из молекул As2.

Рис.2.2 Кривая растворимости мышьяка в жидком Галлии.

Стандартное значение энтропии

S0298= 15,3 кал/ (мольград).

При температуре плавления арсенида галлия общее давление паров мышьяка

Робщ=0,976 ат, РAs4 =0,902 ат, РAs2=0,074 ат.

Давление паров галлия при этом менее 10-4ат.

Температура диссоциации арсенида галлия определяется тонкой пересечения кривой давления паров галлия с кривой давлений As2. С учетом точности измерений малых давлении температура начала диссоциации арсенида галлия и соответствующее значение давления паров (РGa = РAs2) равны: Тр=660±100°С;

PGa=РAs2=5⋅10-7 - 5⋅10-10 ат.


Выращивание кристаллов GaAs

Для синтеза арсенида галлия используются направленная кристаллизация, зонная плавка и метод Чохральского.

Рис. 2.3 Распределение температур в двухзонной печи, используемой для выращивания GaAs по методу Бриджмена.

Как и во всех других случаях, выращивание кристаллов из расплавов стехиометрического состава (или близкого к нему) обладает тем преимуществом, что процесс достаточно производителен и имеется возможность очистки синтезированного материала зонной плавкой. Методы выращивания из растворов и из паровой фазы имеют весьма малую производительность, а чистота получаемого материала определяется чистотой исходных материалов. Однако в этих последних методах степень загрязнения материала ниже, чем при выращивании из расплавов, а однородность материала может быть значительно выше.


Направленная кристаллизация

Для выращивания чистых однородных кристаллов арсенида галлия используется метод Бриджмена. (рис 1.1)

Схема установки направленной кристаллизации GaAs.

Галлий промывают в теплой разбавленной соляной кислоте для удаления с поверхности окисного слоя, затем в деионизованной воде и помещают вместе с мышьяком в стехиометрическом соотношении в кварцевую лодочку. Помимо этого добавляют некоторый избыток мышьяка, необходимый для создания избыточного давления. Затем лодочку с исходными компонентами помещают в реакционную ампулу, запаянную с одного конца. Другой конец ампулы присоединяют к вакуумной системе, а ампулу помещают в печь, нагреваемую во время откачки до 250°С. При этом удаляется трехокись мышьяка, после чего ампулу запаивают и помещают в открытую с обеих концов керамическую трубку, перемещаемую с регулируемой скоростью через систему печей, состоящую из трех отдельных нагревателей. В печи 3 поддерживается температура 605°С, определяющая упругость пара мышьяка в ампуле. Жидкий арсенид галлия образуется в печи 2, где максимальная температура равна 1250°С. Затем расплав кристаллизуется направленно, с одного конца, путем перемещения ампулы со скоростью 1-2см/ч через соответствующий градиент температур, созданный между печами 1и2. В середине зоны 1 температура составляет 1150°С, что создает градиент температур 5° на 1см. Точность поддержания температур в зонах ±2,0°С. Когда кристаллизация арсенида галлия закончена, весь слиток находится при 1200°С, после чего медленно охлаждается до комнатной температуры.

Направленная кристаллизация позволяет получить чистый и однородный материал. Однако при этом выдвигаются жесткие требования к материалу лодочки, в которой выращивается слиток. Наибольшее применение нашли лодочки из кварца, окиси алюминия, нитрида бора. Степень компенсации монокристаллов GaAs значительно падает при проведении последующей термообработки при 800°С в течении 484ч. В результате проведения термообработки исчезают уровни с энергией активации 0,01-0,2эв.

Лучшие монокристаллы арсенида галлия, выращенные направленной кристаллизацией, имеют концентрацию электронов 5*1014см-3 и подвижность 8000см2/ (в*сек) при 300°К. Направленной кристаллизацией также получены полуизолирующие кристаллы арсенида галлия.

Зонная плавка

Зо́нная пла́вка (зо́нная перекристаллиза́ция) - метод очистки твёрдых веществ, основанный на различной растворимости примесей в твердой и жидкой фазах. Метод является разновидностью направленной кристаллизации, от которой отличается тем, что в каждый момент времени расплавленной является некоторая небольшая часть образца. Такая расплавленная зона передвигается по образцу, что приводит к перераспределению примесей. Если примесь лучше растворяется в жидкой фазе, то она постепенно накапливается в расплавленной зоне, двигаясь вместе с ней. В результате примесь скапливается в одной части исходного образца. По сравнению с направленной кристаллизацией этот метод обладает большей эффективностью.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее