150295 (Защита от изменения частоты), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Защита от изменения частоты", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150295"

Текст 2 страницы из документа "150295"

При настройке устройств, реализующих алгоритм АЧР-С, необходимо задать уставку F'>.

1.4 Совмещенная частотная разгрузка

Для более рационального отключения очередей нагрузки предусматривают объединение действия всех рассмотренных ранее алгоритмов на один исполнительный орган (выходное реле) или, как принято говорить, совмещают в любом сочетании действие разных алгоритмов на одну и ту же ступень нагрузки.

Процесс работы такого алгоритма иллюстрирует рис. 1.7, на котором совмещены все три ранее рассмотренных графика изменения частоты, характеризующих работу алгоритмов АЧР-1, АЧР-2 и АЧР-С.

Если изменение контролируемой частоты в системе будет происходить по линии 3, когда f ' > F', то отключение нагрузки произойдет в момент времени t1.

При изменении частоты по линии 2 запуск алгоритма АЧР-С не происходит из-за изменения частоты со скоростью, меньшей уставки срабатывания этого алгоритма. Однако при достижении частотой значения Fп АЧР-1 (момент t3) алгоритм АЧР-1 запускается. Через промежуток времени ТАЧР-1 (момент срабатывания tcp) алгоритм АЧР-1 срабатывает и происходит отключение нагрузки.

Рис. 1.7. Графики изменения частоты, характеризующие работу алгоритма совмещенной частотной разгрузки

Рис. 1.8. Обобщенная функциональная схема алгоритма совмещенной частотной разгрузки

Последний из рассматриваемых алгоритмов — АЧР-2 действует аналогично и, если значение контролируемой частоты не вернулось к FB АЧР-2, срабатывает в момент t5.

Все сказанное позволяет представить обобщенную функциональную схему алгоритма совмещенной частотной разгрузки в виде, показанном на рис. 1.8. Фактически она представляет собой объединение ранее рассмотренных обобщенных функциональных схем отдельных алгоритмов.

При настройке устройств частотной разгрузки для алгоритма совмещенной частотной разгрузки задают:

Fп АЧР-1— частоту пуска алгоритма АЧР-1 (элемент А4);

Fп АЧР-2 — частоту пуска алгоритма АЧР-2 (элемент А6);

FB АЧР-2 — частоту возврата алгоритма АЧР-2 (элемент А 7);

Fбл — скорость изменения частоты, при достижении которой блокируется работа алгоритма АЧР-1 при замкнутом положении программного ключа SA1 (элемент А5);

F'> — скорость изменения частоты, при которой происходит запуск алгоритма АЧР-С (элемент А10);

Tачр-1 — время срабатывания алгоритма АЧР-1 (элементе А15);

Tачр-2 — время срабатывания алгоритма АЧР-2 (элементе А16);

U< — напряжение, при котором происходит ускорение срабатывания алгоритма АЧР-2 (раньше момента времени, задаваемого элементом А16) при замкнутом положении программного ключа SA2.

1.5 Включение нагрузки по частоте (ЧАПВ)

В результате срабатывания алгоритмов частотной разгрузки происходит восстановление частоты (см. графики изменения частоты во времени, показанные рис. 1.7) до значения FЧАПВ (моменты времени t4, t7, t8 на рис. 1.7 для линий 2, 3 и 1 соответственно), что позволяет включить нагрузку, отключенную ранее по сигналам алгоритмов АЧР. Выполнение условий, позволяющих включить нагрузку, контролирует алгоритм включения нагрузки по частоте (ЧАПВ) (рис. 1.9). Этот же алгоритм формирует соответствующие сигналы на включение нагрузки.

Рис. 1.9. Обобщенная функциональная схема алгоритма ЧАПВ

Для исключения срабатывания алгоритма ЧАПВ при пониженном напряжении сети в обобщенную функциональную схему алгоритма должен быть введен элемент, контролирующий напряжение сети и дающий разрешение на включение нагрузки только при определенном значении U>.

В обобщенной функциональной схеме алгоритма ЧАПВ (рис. 1.9) предусмотрен специальный ключ SA1, позволяющий дополнить данный алгоритм узлом контроля напряжения и тем самым учесть особенности работы энергосистемы.

В функциональной схеме предусмотрено использование внешнего, не связанного с работой алгоритма, сигнала "Запрет ЧАПВ", блокирующего работу алгоритма ЧАПВ.

При настройке работы алгоритма в реальных условиях необходимо задать следующие уставки:

Fчапв > — по частоте запуска (возврата) алгоритма ЧАПВ (элемент A3);

U> — по напряжению разрешения срабатывания алгоритма ЧАПВ при нижнем положении контакта программного ключа SA1 (элемент A4);

T — по выдержке времени алгоритма ЧАПВ (элемент А6).

Выдержка времени канала по напряжению (элемент A5) не регулируется и предназначена для устранения срабатываний при кратковременных изменениях напряжения UK.

1.6 Ограничение повышения частоты (АОПЧ)

Отделение избыточной по нагрузке энергосистемы или ее части, а также отключение значительной нагрузки приводит к повышению частоты в энергосистеме. Вместе с генераторами ГЭС увеличивают частоту вращения и работающие параллельно с ними на общую сеть турбогенераторы, что представляет опасность для турбин, приводящих их во вращение. Срабатывание автоматов безопасности турбин часто не предотвращает увеличения частоты их вращения сверх допустимой, так как после прекращения подачи пара генераторы могут перейти в режим синхронного двигателя и начать вращать турбины с частотой, соответствующей частоте сети, задаваемой гидрогенераторами.

Пусть частота изменяется в соответствии с линией 2 (рис. 1.10), достигая значения Fп аопч в момент t3, что приводит к пуску алгоритма ограничения повышения частоты. Если и дальше частота в энергосистеме будет повышаться, то после истечения выдержки времени Таопч в момент времени t7 алгоритм сформирует сигнал на исполнительный элемент для отключения генераторов электростанции.

Рис. 1.10. Графики изменения частоты, характеризующие работу алгоритма АОПЧ

Рис. 1.9. Обобщенная функциональная схема алгоритма АОПЧ

Возможно и другое развитие событий. Частота f, изменяясь в соответствии с линией 4 на рис. 1.10, в момент времени t6 достигает значения Fп аопч, но через промежуток времени t < Таопч уменьшится до значения Fв аопч (момент времени t8), что должно привести к блокированию устройства, так как условие формирования сигнала исполнительного элемента с этого момента отсутствует.

Если учесть сказанное ранее о целесообразности контроля такого параметра энергосистемы, как скорость изменения частоты, то при составлении обобщенной функциональной схемы алгоритма АОПЧ необходимо рассмотреть еще два варианта изменения частоты (см. графики 1 и 3 на рис. 1.10).

Пусть при разгрузке частота в системе изменяется в соответствии с линией 1, тогда в момент времени t1 будет выполнено условие f'>F'п и алгоритм АОПЧ должен подать сигнал на исполнительный орган. Можно представить и иной процесс изменения частоты — монотонное ее возрастание с небольшой скоростью до значения Fп аопч (линия 3 на рис. 1.10, момент t4), когда запускается алгоритм АОПЧ, а затем быстрое снижение со скоростью f ' > F'в. В этом случае работу алгоритма необходимо остановить в момент времени t5.

Обобщенная функциональная схема алгоритма АОПЧ, отвечающая рассмотренным условиям, приведена на рис. 1.11. В ней можно выделить две части — одна из них обеспечивает включение АОПЧ, а вторая — отключение.

Элементы, измеряющие частоту и скорость ее изменения, являются общими для этих частей, поэтому сигналы с их выходов поступают на все пороговые элементы (элементы А3 — А7) выделенных частей.

Для исключения ложных срабатываний алгоритма в обобщенную функциональную схему введены не только традиционные элементы временных задержек (А8, А10—А12), но и пороговый элемент А4. Поэтому алгоритм не реагирует на скорость изменения частоты в тех случаях, когда абсолютное значение частоты, измеряемое этим элементом, меньше 50,3 Гц.

В схему введены ключи SA1 и SA2 для того, чтобы при необходимости можно было исключать из алгоритма АОПЧ канал по скорости изменения частоты.

При настройке этого алгоритма в реальных энергосистемах необходимо задать следующие уставки:

Fп АОПЧ вкл— по частоте пуска алгоритма АОПЧ (элемент A3);

FАОПЧ откл — по частоте пуска алгоритма АОПЧ (элемент А6);

F'> — по скорости увеличения частоты (элемент А5);

F'< — по скорости уменьшения частоты (элемент А7);

Твкл — по времени срабатывания алгоритма АОПЧ (элемент А8);

Тоткл — по времени срабатывания алгоритма АОПЧ (элемент А10).

Неизменяемые временные задержки, создаваемые элементами А11 и А12, предназначены для исключения случайных срабатываний алгоритма при кратковременных колебаниях скорости изменения частоты.

2.1 Расчет мощности нагрузки, подключаемой к АЧР

В случае возникновения аварийного дефицита активной мощности ограничение режима потребления, включая использование противоаварийной автоматики, определено Федеральным законом "Об электроэнергетике" (статья 38, пункт 8).

При этом участие нагрузки потребителей в автоматической разгрузке при аварийном дефиците активной мощности должно отражаться в договорах на технологическое присоединение к электрическим сетям и электроснабжение.

Потребителей, включенных в графики ограничений и аварийных отключений, по возможности следует подключать к первым очередям АЧР.

Устройства АЧР, установленные у потребителей, рекомендуется резервировать на питающих энергообъектах устройствами с меньшими уставками по частоте или большими уставками по времени срабатывания. При этом в суммарных отчетных данных одна и та же нагрузка, подключенная к основному и резервному устройствам АЧР, должна учитываться только один раз.

Действие устройств автоматического включения резерва (АВР) должно быть увязано с действием АЧР таким образом, чтобы действием АВР не восстанавливалось питание отключенной от АЧР нагрузки от тех же или других электрически связанных источников питания.

Запрещается переключать нагрузки, отключенные устройствами АЧР, на оставшиеся в работе электрически связанные источники питания. Нагрузка потребителей, не допускающих длительного перерыва в электроснабжении, должна быть переключена на автономные (независимые) источники питания.

При наличии в энергосистеме крупных потребителей тепловой энергии от турбин электростанций следует, по возможности, не подключать к АЧР потребителей пара от электростанций из-за опасности уменьшения генерируемой мощности вследствие полного или частичного прекращения потребления пара.

Длительность отключения потребителей действием автоматической разгрузки определяется временем ликвидации аварийной ситуации и должна быть минимально возможной.

Мощность нагрузки, подключаемой к АЧР, должна выбираться из условий ликвидации расчетных дефицитов активной мощности и приниматься с некоторым запасом, необходимость которого обусловлена:

возможностью возникновения аварийного дефицита активной мощности, превышающего расчетный;

возможностью снижения мощности нагрузки в режимах выходных и праздничных дней, ночных и дневных часов и т.д.

Расчет аварийной разгрузки и определение расчетных дефицитов активной мощности осуществляется на основе последовательного анализа схем и режимов, начиная с аварийного отделения энергорайона, двух смежных энергорайонов и т.д., вплоть до разделения ЕЭС на части. При этом должны быть рассмотрены реально возможные аварийные режимы в нормальной и ремонтных схемах.

При выборе расчетных условий, как правило, следует исходить:

а) для изолированно работающих энергосистем – из возможности отключения наиболее мощной электростанции;

б) для небольшого энергорайона – из возможности его аварийного отделения с дефицитом мощности вследствие отключения питающих связей и/или наиболее мощного генератора (энергоблока);

в) для более крупного энергорайона или нескольких смежных энергорайонов - из возможности аварийного отделения с дефицитом мощности вследствие отключения питающих связей и/или наиболее мощной электростанции;

г) для ЕЭС в целом – из возможности аварийного ее разделения на части с дефицитом мощности в отделившейся части вследствие отключения питающих межсистемных связей и генерируемой мощности (в том числе разгрузки и отключения энергоблоков АЭС в соответствии с технологическим регламентом при снижении частоты ниже 49,0 Гц).

Мощность, подключаемых к АЧР1 потребителей в любом энергорайоне с учетом запаса определяется по выражению:

Р(АЧР1) Рг + 0,05;

где Рг и 0,05 – соответственно расчетный дефицит активной мощности и необходимый запас (в относительных единицах от суммарного потребления в исходном режиме).

В качестве расчетного принимается максимально возможный для энергорайона аварийный дефицит мощности.

Подключаемая к АЧР мощность нагрузки должна распределяться равномерно по очередям.

Допускается незначительная неравномерность распределения по очередям мощности нагрузки при условии увеличения ее доли на очередях более высоких уставок по частоте АЧР.

Мощность нагрузки, подключаемой к несовмещенной АЧР2, рассчитывается по условию достаточности для подъема частоты от нижней границы уставок АЧР1 до заданной частоты возврата несовмещенной АЧР2 (выше 49,0 Гц).

С учетом запаса к очередям несовмещенной АЧР2 должна подключаться мощность потребителей:

Р(АЧР2) 0,1.

Суммарная мощность, подключаемой к АЧР нагрузки (АЧР1 и несовмещенной АЧР2), с учетом запасов составляет:

Р(АЧР) = Р(АЧР1) + Р(АЧР2)г + 0,05) + 0,1 = Рг + 0,15

Суммарная мощность нагрузки потребителей, подключаемой к АЧР в отдельных энергорайонах, принимается по наиболее жесткому из требований ликвидации местного и системного дефицита мощности.

ЧАПВ восстанавливает питание отключенных от АЧР потребителей при подъеме частоты в результате мобилизации резервов генерирующей мощности и восстановления отключившихся связей.

Суммарная мощность подключаемой к ЧАПВ нагрузки не регламентируется и определяется по местным условиям работы энергорайона.

Устройства ЧАПВ устанавливаются, в первую очередь, в случаях невозможности быстрого восстановления питания потребителей оперативным путем после действия устройств АЧР (на удаленных подстанциях без постоянного дежурного персонала).

Очередность включения потребителей устройствами ЧАПВ должна быть обратной очередности отключения их устройствами АЧР.

При подключении к одной очереди ЧАПВ нескольких присоединений, их выключатели должны включаться поочередно с интервалами времени не менее 1 сек (если это требуется по режиму работы источников оперативного тока).

Дополнительная автоматическая разгрузка (ДАР) применяется при ликвидации больших местных относительных дефицитов активной мощности (более 45% от потребления [3]) со скоростью снижения частоты более 1,8-2,0 Гц/сек, при которой действие АЧР может оказаться неэффективным. Поэтому ДАР должна быть быстродействующей и срабатывать в начале процесса снижения частоты – до начала работы АЧР1 или в процессе срабатывания ее первых очередей.

ДАР обеспечивает ускоренное отключение заданной мощности нагрузки потребителей и способствует уменьшению глубины и скорости снижения частоты, чем улучшает условия действия АЧР.

ДАР осуществляет автоматическое отключение крупной нагрузки потребителей по факторам, характеризующим возникновение местного дефицита активной мощности, без фиксации снижения частоты. Запуск автоматики осуществляется по факту отключения генерирующих источников, питающих линий, силовых трансформаторов и т.д. с контролем направления и величины предшествующей мощности.

Мощность, подключаемой к ДАР нагрузки потребителей, выбирается такой величины, чтобы после действия ДАР остаточный дефицит активной мощности не превышал допустимый, при котором обеспечивается эффективность работы АЧР.

Величина дефицита активной мощности, который может быть ликвидирован суммарным действием ДАР и АЧР в энергорайоне, зависит от постоянной времени механической инерции района, времени отключения потребителей устройствами АЧР и ДАР и определяется расчетами.

Допускается подключение одних и тех же потребителей к АЧР и ДАР. При этом суммарная мощность разгрузки должна быть достаточной для подъема частоты выше 49,0 Гц после срабатывания ДАР и АЧР при расчетном дефиците активной мощности.

Табл. 2.1 Рекомендуемые значения уставок для системы частотной разгрузки.

Очередь

Уставки АЧР-1

Уставки АЧР-2

Нагрузка, %

Уставки ЧАПВ

Частота, Гц

Время, с

Частота пуска (возврата), Гц

Частота, Гц

Частота, Гц

Время, с

1-1

49,21

0,3

-

-

4

49,9 - 49,7

40 - 80

1-2

49,12

2-1

-

-

49,13 (49,2)

5

10

49,9 - 49,7

40 - 80

2-2

-

-

7

2-3

-

-

9

2-4

-

-

11

1-3

48,8

от 0,15

до 0,3

49,04 (49,1)

13

10

49,9

60 - 70

1-4

48,7

15

1-5

48,6

48,94 (49,1)

17

20

1-6

48,5

19

49,8

50 - 60

1-7

48,4

21

1-8

48,3

48,84 (49,1)

23

30

1-9

48,2

25

49,7

40 - 50

1-10

48,1

27

1-11

48,0

29

1-12

47,9

48,74 (49,1)

31

40

49,6

30 - 40

1-13

47,8

33

49,5

20 - 30

1-14

47,7

35

49,4

10 - 20

1-15

47,6

37

1-16

47,55

39

1 Специальная очередь АЧР-1,

2 Технологическая очередь АЧР-1,

3 Несовмещенная очередь АЧР-2,

4 Совмещенные очереди АЧР-1 и АЧР-2,

5 46,5 Гц в соответствии со стандартом [3].

Пример расчета мощности нагрузки, подключаемой к АЧР по табл. 2.1.

Суммарное потребление активной мощности в исходном режиме Р = 1000 МВт, расчетный дефицит мощности Рг=450 МВт. Мощность, подключаемых к АЧР1 потребителей Р(АЧР1) = Рг + 0,05·Р = 450+50 = 500 МВт, распределение по 14 очередям Р(АЧР1)/14 = 500/14 = 35,7 МВт. К очередям несовмещенной с АЧР1 АЧР2 должна подключаться мощность потребителей Р(АЧР2) = 0,1·Р = 100 МВт, распределение по 4 очередям Р(АЧР2)/4=100/4=25 МВт. К специальной и технологической очередям (1-1, 1-2) подключена мощность 0,04·Р/2 = 20 МВт.

Распределение мощности нагрузок потребителей по очередям представлена в табл. 2.2.

Табл. 2.2. Распределение мощности по очередям.

Очередь

Потребитель

Мощность пот-ребителя, МВт

1-1

1-й цех кирпичного завода

19

1-2

2-й цех кирпичного завода

21

2-1

Текстильная фабрика

24,8

2-2

Мясоконсервный комбинат

28

2-3

Картонно-бумажный комбинат

23

2-4

Молокозавод

25

1-3

Птицефабрика

35

1-4

Цементный завод

40

1-5

Колхоз №1

30

1-6

1-й цех металлургического завода №1

39

1-7

1-й цех металлургического завода №2

31

1-8

Колхоз №2

35

1-9

Колхоз №3

36

1-10

2-й цех металлургического завода №1

39

1-11

2-й цех металлургического завода №2

31

1-12

Тракторный завод

40

1-13

Химический завод №1

30

1-14

Химический завод №2

35,7

1-15

3-й цех металлургического завода №1

39

1-16

3-й цех металлургического завода №2

31

3.1 Современные устройства частотной разгрузки

Первоначально устройства АЧР были ориентированы на контроль единственного параметра – частоты, хотя предпринимались попытки создания устройств АЧР на базе статических и электромеханических реле с контролем скорости изменения частоты.

В современных цифровых устройствах частотной разгрузки реализован контроль частоты, скорости изменения частоты, напряжения. Опыт эксплуатации первого поколения цифровых устройств частотной разгрузки, доказал их эффективность и перспективность использования.

По мере развития техники и накопления опыта эксплуатации различных устройств АЧР в реальных энергосистемах сформировалось общее мнение о необходимости контроля не только скорости изменения частоты, но и напряжения. Более того, появились исследования, предлагающие использовать и другие параметры – вторую производную по частоте, скорость изменения напряжения.

К настоящему времени существует достаточно цельное представление о том, какой должна быть совокупность контролируемых параметров частотной аварии, их уставок и условий взаимодействия всех частей устройств АЧР. На практике такую совокупность стало принято называть АЛГОРИТМОМ частотной разгрузки. Различают описанные выше алгоритмы АЧР-1, АЧР-2, АЧР-С, АЧР-Н (разгрузка по отклонению частоты и напряжения), а также комбинированные алгоритмы, объединяющие в различных вариантах все или отдельные из названных алгоритмов. Алгоритмы ЧАПВ (включение нагрузки, отключенной ранее по одному из алгоритмов разгрузки, после восстановления значения частоты) также не ограничиваются контролем частоты, а учитывают и напряжение в контролируемой сети.

Микропроцессорный блок БМАЧР.

Блок БМАЧР стал одним из первых цифровых устройств, серийно выпускаемых в России. Блок разработан в НТЦ "Механотроника" совместно со специалистами Рижского технического университета (проф. Н. С. Гуров) для применения в системах частотной разгрузки.

В данном устройстве впервые в отечественной практике был реализован принцип программирования параметров устройства частотной автоматики с целью аварийной разгрузки энергосистемы, причем доступ к устройству для изменения уставок можно получить только после введения пароля. Цифровая техника позволила не только отображать значения уставок на дисплее устройства, но и организовать пакетный принцип задания и хранения ставок.

В устройстве предусмотрены следующие алгоритмы разгрузки:

  • АЧР-1 с изменяемыми уставками по частоте срабатывания и блокированием по скорости снижения частоты;

  • АЧР-2 с изменяемыми уставками по частоте запуска и возврата, а также по времени срабатывания;

  • АЧР-С с изменяемой уставкой по скорости срабатывания и тремя очередями срабатывания;

  • ЧАПВ с общей для всех алгоритмов разгрузки уставкой по частоте запуска и возврата и независимо изменяемыми уставками по времени включения нагрузки, отключенной по алгоритмам АЧР-1 (ЧАПВ-1), АЧР-2 (ЧАПВ-2) и АЧР-С1 (ЧАПВ-С1).

К недостаткам блока можно отнести:

  • невозможность подключения внешнего компьютера;

  • отсутствие связи с АСУ;

  • отсутствие контроля напряжения при работе алгоритмов разгрузки и ЧАПВ;

  • отсутствие запоминания информации об изменении входных и выходных сигналов, срабатывании алгоритмов;

  • отсутствие индикации текущего значения частоты.

В настоящее время в эксплуатации находится более 500 блоков БМАЧР, отказов блоков этого типа не было зарегистрировано.

Микропроцессорные блоки БМАЧР-М.

Новая серия блоков частотной разгрузки, названная БМАЧР-М, отличается наличием нескольких исполнений как по набору алгоритмов, так и по способу формирования выходного сигнала.

Один из блоков этой серии (БМАЧР-М 1 А) выполнен так, что может заменять блоки БМАЧР в электроустановках без внесения изменений в схему подключения. В блоках новой серии предусмотрен контроль уровня напряжения в сети при работе алгоритмов АЧР и ЧАПВ, расширен диапазон контролируемой частоты, введена светодиодная сигнализация о срабатывании каналов разгрузки и пропадании оперативного питания, предусмотрена индикация на дисплее текущего значения частоты сети. Введены каналы связи блока с ПЭВМ и АСУ.

В верхней части лицевой панели устройства типа БМАЧР-М расположен буквенно-цифровой дисплей из шести восьмисегментных индикаторов, что позволяет, сохранив простоту и невысокую цену блока, значительно расширить возможности интерактивного диалога. Ниже дисплея находятся соединитель RxTx для подключения ПЭВМ, шесть светодиодных индикаторов и четыре клавиши для навигации по меню.

Как и в блоке БМАЧР, в модернизированном блоке предусмотрено четыре фиксированных алгоритма:

  • АЧР-1 (с возможностью блокирования работы алгоритма по скорости снижения частоты);

  • АЧР-2 (с выдержкой времени на срабатывание и уставками по частоте запуска и возврата);

  • АЧР-С (с тремя очередями разгрузки);

  • ЧАПВ (раздельные каналы для включения нагрузки, отключенной по алгоритмам АЧР-1, АЧР-2 и АЧР-С).

Сигналы на отключение и включение нагрузки формируются различными выходными электромеханическими реле.

Все модернизированные устройства снабжены журналом событий, в котором регистрируется и хранится информация о 256 последних событиях — максимальных и минимальных значениях частоты, пуске и срабатывании частотных реле, изменении входных и входных сигналов, пропадании и появлении контролируемого напряжения.

Микропроцессорное устройство "Сириус-АЧР".

Микропроцессорное устройство частотной разгрузки "Сириус-АЧР" предназначено для использования на электростанциях и подстанциях энергосистем с целью ликвидации дефицита активной мощности путем автоматического отключения потребителей при снижении частоты (АЧР) с последующим автоматическим включением отключенных потребителей при восстановлении частоты (ЧАПВ).

Терминал "Сириус-АЧР" является централизованным устройством, выдающим сигналы отключения и последующего включения одного или нескольких присоединений, подведенных под частотную разгрузку.

Наличие традиционных алгоритмов разгрузки типа АЧР-1, АЧР-2 и ЧАПВ (АЧР-1 имеет возможность блокировки по величине скорости снижения частоты), позволяет использовать устройство для замены существующих блоков АЧР.

Особенности "Сириус-АЧР":

  • Три очереди разгрузи: АЧР-1, АЧР-2 и ЧАПВ;

  • Совмещенная АЧР-2 со ступенью АЧР-1 (общее реле);

  • Блокировка АЧР-1 по скорости снижения частоты;

  • Наличие контрольного канала для защиты от ложных срабатываний;

  • Контроль по напряжению;

  • Встроенный генератор частоты для проверок.

Микропроцессорные модули SPAF 340.

Реле частоты типа SPAF 340 (производитель АВВ “Реле-Чебоксары”) подключается к трансформаторам напряжения защищаемой секции шин и состоит из одного модуля — комбинированного модуля частоты и измерения скорости частоты SPCF 1D15. Модуль реле состоит из четырех ступеней разгрузки и ступени восстановления, получающих сигнал от общего измерителя частоты, т.е. и в данном устройстве использованы модули разного функционального назначения (ср. с устройствами АЧРМ и БММРЧ).

Измерение частоты производится косвенно, по результатам измерения промежутка времени между прохождениями сигнала через нуль. Значение частоты рассчитывается как среднее значение на интервале, длина которого выбирается пользователем. Для определения частоты может быть выбрано от 3 до 20 таких циклов, что влияет на время срабатывания реле. Однако при любом количестве циклов время срабатывания модуля не может быть менее 100 мс. Канал измерения частоты снабжен полосовым фильтром для подавления гармоник измеряемого сигнала.

Расчет скорости изменения частоты производится по двум последовательным значениям частоты, определенным не менее чем через три цикла.

Реле частоты MiCOM P-940.

Реле частоты MiCOM Р-940 содержит четыре частотные защиты с независимыми измерительными органами, обеспечивающими контроль:

  • повышения частоты;

  • понижения частоты;

  • скорости изменения частоты;

  • средней скорости изменения частоты;

  • повышения напряжения;

  • понижения напряжения.

Защита от понижения частоты работает с выдержкой времени, задаваемой пользователем (алгоритм АЧР-2). Отсчет выдержки времени начинается с момента, когда значение частоты становится ниже уставки. Если после истечения выдержки времени значение частоты остается ниже уставки, реле MiCOM Р-940 формирует сигнал на отключение нагрузки.

Алгоритм АЧР-С обеспечивает ускоренное отключение нагрузки при быстром снижении частоты в течение заданной выдержки времени.

Контроль средней скорости изменения частоты удобен при наличии в системе потребителей большой мощности (например, синхронных или асинхронных электродвигателей) или при переключении большой нагрузки. В этих случаях срабатывание защит по частоте даже с учетом скорости изменения частоты могло бы привести к излишним отключениям нагрузки.

Защита по напряжению имеет две независимые ступени, причем одной из них можно задать обратнозависимую характеристику. При пониженном значении напряжения блокируются все ступени отключения и подключения нагрузки (алгоритмы АЧР и ЧАПВ).

Реле частоты может быть использовано и для защиты генератора от работы при повышенной и/или пониженной частоте. Однако, в отличие от устройств БММРЧ, в рассматриваемом реле не предусматривается активного воздействия на регулятор частоты генератора. Вместо этого реле MiCOM P-940 по результатам контроля времени работы генератора при пониженных и повышенных значениях частоты формирует сигнал, отключающий генератор от нагрузки.

В реле предусмотрена возможность задания четырех групп уставок частотной защиты, что позволяет задавать различные режимы его работы.

Литература

1. В.Ф. Александров, В.Г. Езерский, О.Г. Захаров, В.С. Малышев. Частотная разгрузка в энергосистемах. ч. 1. М.: НТФ “Энергопрогресс”, “Энергетик”, 2007.

2. В.Ф. Александров, В.Г. Езерский, О.Г. Захаров, В.С. Малышев. Частотная разгрузка в энергосистемах. ч. 2. М.: НТФ “Энергопрогресс”, “Энергетик”, 2007.

3. Технические правила организации в ЕЭС России автоматического ограничения снижения частоты при аварийном дефиците активной мощности (автоматическая частотная разгрузка) // Стандарт ОАО “СО-ЦДУ ЕЭС”, 2005.

4. М.А. Беркович, В.А. Гладышев, В.А. Семенов. Автоматика энергосистем. М.: “Энергоатомиздат”, 1991.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее