144826 (Эниология и архитектура), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Эниология и архитектура", который расположен в категории "". Всё это находится в предмете "строительство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "строительство" в общих файлах.

Онлайн просмотр документа "144826"

Текст 4 страницы из документа "144826"

Представляет интерес, чем же форма шатра так обаяла наших далеких предков, что заставила искать столь изысканное конструктивное решение. Ответ может подсказать архитектурная эниология — наука об энергоинформационном обмене в архитектуре.

Основу шатра представляет собой пирамида кровли, ограниченная «юбкой» карнизного свеса, являющаяся постоянным генератором формового торсионного поля. Это поле, в соответствии с представлениями Шипова-Акимова, проявлено в объеме кровли, через вершину зеркально распространено вверх, а относительно «днища» пирамиды—оно опять же зеркально отражается вниз, в жилое пространство, образуемое стенками шатра.

Судя по опытному образцу, эксплуатировавшемуся много лет, энергоинформационный микроклимат жилой зоны отличается восстанавливающим силы и бодрость эффектом. К сожалению, утрата модели не позволила до сего времени провести необходимые исследования в натуре (предполагается вновь воссоздать тентовый шатер славянского типа), и лишь заочный биолокационный эниоанализ подтверждает этот эффект.

Объяснение благотворного микроклимата жилой зоны можно получить, опираясь на известные полевые эффекты пирамид. Это «живая» и «мертвая» точки, находящиеся на оси, разделенной по высоте на трети. Известно, что поле в пространстве пирамиды неоднородно.

Точка Fp которая лежит на пересечении биссекторных линий вершин, всегда считалась «мертвой», непригодной для жизни микроорганизмов и живых тканей. А точка F2, делящая оставшийся объем пополам, считалась «живой», способствующей развитию жизненных процессов. Поэтому шатер «лечит», действует на обитателя укрепляюще.

Видимо, этот эффект животворности и дал долгую жизнь шатрам.

3.3 Складки и ребра

Сечения пирамиды позволяют подойти к свойствам пересеченных плоскостей, из которых образуются складки скатных кровель и углы помещений. Условно складку можно представить не только как пересечение, но и как сочленение по ребру двух плоскостей. Увеличивая количество сочленений, получим более сложные комбинации, в основе которых лежит простейшая складка. Представим складку в разрезе и проанализируем ее энергетику. В общем виде зона В (внутренняя) является зоной пониженной напряженности, зона Н (наружная) — зоной повышенной напряженности. Через угол происходит как прорыв потока в зону Н, так и стекание потока вдоль ребра: образуется зона концентрации напряжений (известная из науки о сопротивлении материалов), стимулирующая разрушения. Точка перемены знака на эпюре — пересечение плоскости показывает границу зоны разрушения, по этой границе, как правило, проходят первые трещины.

Отбор энергии от живого организма углом складки тем выше, чем острее угол. Вот почему расшалившихся и наполненных избыточной энергией детей ставят в угол — снимают избыток энергии. Этот прием может быть использован для проектирования в помещениях зон отдыха от напряженных ситуаций.

Сочетание двух складок по плоскостям создает нишу. Два вида таких ниш хорошо известны: тупоугольная и прямоугольная. Тупоугольная ниша чаще используется как эркер, а прямоугольная — как альков. Внутри ниши напряженность поля ниже фоновой, и там будет происходить отбор энергии, а вне ниши, наоборот, ее приток. Тем самым можно использовать форму ниши для регулирования состояния человека в различных зонах помещения. Так, вряд ли стоит размещать в нише рабочее место, хотя место расслабления, отдыха в ней вполне уместно. Соответственно, форма, обратная нише,- пилястра работает на приток энергии.

3.4 Своды и купола. Арки. Круглые формы

Круглые архитектурные формы в настоящее время используются реже, чем формы, образованные плоскими поверхностями, однако их свойства могут оказаться важными и полезными не только при реконструкции, но и при новом строительстве . И если сопромат лишь констатирует этот факт, то Эниология пытается объяснить. Проведенные авторами опыты и измерения на моделях и на натурных фрагментах зданий показывают, что поля, образованные углами, даже тупыми, имеют переходную зону скачка напряженности. Это место и является зоной концентрации напряжений, где при больших нагрузках или от времени возникают усталостные трещины, происходит разрушение. Чем острее угол, чем больше по размеру стыкуемые поверхности, тем больше напряженность поля в переходной зоне.

По оценкам авторов, при отношении длины наименьшей из стыкуемых поверхностей к радиусу скругления не менее 1/20, зона перемены знака поля вообще не возникает. Этим объясняется предохраняющая от разрушений роль архитектурных обломов со скругленными элементами и других архитектурных деталей — плинтусов, галтелей, карнизов, баз и капителей колонн. Купола и своды с точки зрения эниологии выполняют функцию распределения концентраций напряжений. Распределение выполняется тем эффективнее, чем меньше крутизна купола или свода. При крутизне арок свода, приближающейся к стреловидной, эффект снижается и по характеру напоминает поля складок.

В центре замкнутых непрерывных сводов, и особенно куполов, рост напряженности может приводить при большой крутизне к сбросу энергии как через конструкцию, так и внутрь сосредоточенным компактным потоком подобно тому, как это происходит в пирамидах и конусах. В остальных случаях криволинейные покрытия выпуклого характера распределяют энергию поля подобно тому, как отражатель прожектора делает световой поток параллельным и равномерным.

Становится понятным эффект круглых ниш, где размещается обычно скульптура: ниша является отражателем ее энергетического, а соответственно, и информационного потоков.

Среди купольных покрытий следует рассмотреть усеченные или незамкнутые купола. Для сводов аналогичную ситуацию представляют зенитные фонари. В замковой части роста напряженности не происходит.

Тот же эффект достигается куполами, завершенными барабанами. Если барабан имеет галтель, то напряженность поля формы выравнивается и опасность разрушения снижается. Крестовые своды отличаются сбросом энергии с ребер сочленения в центре. В качестве компенсатора для зданий значительных размеров применяют центральные купола на парусах, на барабане, реже шатровое завершение. К круглым элементарным формам следует относить и колоннады из круглых колонн . В сравнении с рядом колонн квадратного сечения можно отметить, что круглая колоннада имеет поле стабильной напряженности с небольшими зонами усиления в центре интерколумния, тогда как колоннада из квадратных колонн имеет такие зоны попарно вне колоннады с фоновыми «островами» между колонн. Если учесть, что интерференционные зоны усиления в первом случае лежат в малоиспользуемой части колоннады, а во втором — в «рабочей» части пространства, то вероятность усиления патогенного эффекта именно в «рабочей» части нежелательна. Круглые сооружения обладают равномерным полем без существенных зон возмущения. Но это, как и плоскость больших размеров, ведет к энергоинформационной монотонности или инертности, что не всегда благоприятно для информационной насыщенности воспринимаемой среды.

Таким образом, напрашивается вывод, что крупные формы являются средством выравнивания энергоинформационных характеристик в обитаемом пространстве. Обогащенная круглой пластикой архитектура может быть средством снижения патогенности.

3.5 Производные формы

К производным формам предлагается относить пространственные образования, обладающие совокупностью свойств простейших форм:

1) формы второго порядка, то есть образованные сочетания одной или двух простейших;

2) сложные формы третьего и более высоких порядков.

К формам второго порядка относится конус (шатровая форма), имеющий круглое в плане основание и лучевую образующую. Конус обладает свойствами, близкими к свойствам пирамиды, но отличается от нее независимостью магнитной ориентации (для пирамиды меридиональная ориентация — средство усиления эффекта), более слабыми полевыми проявлениями, равномерностью поля по периметру.

К формам третьего порядка можно в первую очередь отнести призмы. Эти архитектурные формы являются чаще всего основой зданий и сооружений, их фрагментов. Трехгранные призмы встречаются редко. Чаще всего здания формируются из прямоугольных призм, но и многогранные призмы, применяемые обычно для башен, барабанов, малых форм, могут встретиться, особенно в реконструируемых зданиях. Традиционно призмы представляют образованными из плоскостей. В этом случае поля призмы аналитически представить трудно. Но если представить призму как совокупность простейших форм — пирамид, то возникает форма второго порядка, поля которой суммируются из полевых характеристик входящих пирамид. Призмы образуются трехгранными пирамидами, сочлененными по граням. Совокупные полевые свойства проявляются как сумма полевых свойств пирамид и ребер. Это особенно наглядно видно на примере прямоугольных призм — параллелепипедов, лежащих в основе архитектуры большинства зданий. Шалаши могли иметь форму пирамиды, конуса, призмы. Каменные постройки — гэр, ложный свод, свод являлись сочетанием призм. С течением времени монопространственные ячейки блокировались, а отдельные объемы плоско перекрывались, и лишь затем возводились покрытия. Возникла устойчивая параллелепипедная форма помещения.

Вопрос комфортности и безопасности такого объема возникает особенно остро в связи с массовым жилым строительством панельных зданий и реконструкцией существующего жилого фонда. Две стороны этого вопроса представляют особый интерес в зданиях с ячеистой параллелепипедной структурой — форма как пространство жизнедеятельности и форма как энергетический генератор, влияющий на состояние здоровья и активности человека. С точки зрения жизнедеятельности у параллелепипеда выявлено много достоинств, связанных с технологией производства и модульностью формы и размеров,— вот основное, что сделало такую форму столь распространенной в течение веков по всему миру. Прямой угол и прямая линия легли в его основу. При изменении масштаба основные свойства пространства сохраняются. Отмечается нейтральность и универсальность по отношению к эргономическим характеристикам жизнедеятельности.

Параллелепипед — самая заурядная и массовая пространственная форма — образован шестью плоскостями, пересекающимися под прямым углом . Попробуем построить параллелепипед не из плоскостных, а объемных элементов. За основу возьмем элементарную пространственную форму — в каждой вершине углов параллелепипеда находится 3-гранная прямоугольная пирамида; 8 пирамид, взаимно встречно состыкованные гранями, образуют исследуемый объем .

В кубе все диагонали сходятся в его центре, и можно предположить, что образованные ими 4 квазипирамиды со взаимно противоположно направленными вершинами, сходящимися в центре куба, взаимно гасят собственную энергию. В параллелепипеде происходит иная картина. Если торцевые стенки — квадраты, то внутри объема содержатся 2 квазипирамиды, такие же, как и в кубе, и 4 вальмовые призмы, их разъединяющие. Во всех случаях по линии фокусов Рг и Р происходит взаимодействие полей, образованных торцевыми энергетическими квазиструктурами, и эта зона представляется наиболее энергоактивной. В более общем случае при неквадратных торцах параллелепипеда вместо пирамид образуются вальмы и фокусные точки преобразуются в линии (энергогребни вальм). Таким образом, согласно предложенной гипотезе внутреннее поле параллелепипеда структурировано и имеет энергозначимые зоны и линии разной напряженности поля формы.

Для жилища одной из важнейших характеристик формы являются пропорции. Их роль существенна при определении высоты помещения, пределы которой в последние десятилетия минимизируют . Существует физический минимум высоты помещения для различных видов деятельности и ее длительности. Этот лимит основывается на самолокации излучений мозга, что доказано Г. А. Сергеевым в его лабораторных опытах в Ленинграде более четверти века назад. Здесь же следует учитывать и эффект интерференции от группы участников процесса, усиливающей самооблучение (улавливание собственного отраженного сигнала) на частотах клеток мозга. При этом, материал потолка является не полностью прозрачным для такого излучения. Но замечено, что эффект придавленности возникает и в помещениях с высотой более физического минимума, но с пропорциями, развитыми активно по горизонтали. Можно с уверенностью предположить, что здесь образуется информационный сигнал на базе энергохарактеристик пропорционального строя объема, близких по параметрам к тем, которые возникают при снижении физического минимума высоты. Возникает еще один предмет опытного исследования архитектурной формы элементарного пространства.

Возвращаясь к проблеме масштаба, есть основания утверждать, что мощность проявления энергоактивности формы соотносима с ее физическими размерами. Не исключено, что существуют пределы, в которых такая закономерность соблюдается.

При переходе к градостроительным формам пространства приходится сталкиваться с формами, образованными прерывистыми ограждениями, в частности не перекрытыми сверху. Эту область энергопроявлений формы еще предстоит изучать. В этой связи переход от одних энергоструктур к другим, в зависимости от масштаба и мощности проявлений, может быть представлен как непрерывная картина, обладающая единством принципа построения, где малые энергообразования одних форм, связанных со своим уровнем крупности или цельности объекта в виде сложившейся формы, могут образовывать на другом, более крупном уровне новые формы и соответствующие им энергообразования. В целом вся картина энергопроявлений образует энергоматрицу архитектурных и градостроительных форм, изучение которой может явиться ключом к пониманию композиционной роли архитектурных форм как важного энергоинформационного явления. В заключение попробуем представить сводную энергоматрицу ячеистой параллелепипедной структуры жилого дома как сочетание микроструктур в макроструктуре.

Целостная картина поля может быть рассмотрена как система зон энергоактивности квазиформ макросистемы дома и микросистем помещений в сочетании с полями излучения формы по ребрам ячеистой структуры конструкций, направленных как внутрь, так и наружу. Возникает необходимость количественных оценок и взаимосогласований напряженности полей и размеров формы на основе составленной качественной модели. Сочетание количественно-качественных характеристик позволяет говорить о возникновении энергоинформационной теории элементарных архитектурных форм на основе параллелепипеда. Принимая за основу поля пирамиды и параллелепипеда, в нашей работе мы впервые предложили атлас зон энергоактивности полей простых архитектурных форм. В процессе его разработки поля форм, характерных для жилой застройки, были сначала спрогнозированы, а затем эта гипотеза была проверена экспериментальным путем. Эксперимент проводился несколькими операторами биолокации, и затем результаты были откорректированы приборными исследованиями напряженности естественного электромагнитного поля по вторичным признакам трещиноватости и частичным разрушениям материалов и конструкций зданий, а также по заболеваниям и искривлению стволов деревьев, находящихся в зоне действия объема здания. В ходе исследования установлены зоны энергоактивности в интерьерах и внешнем пространстве зданий, соответствующие принципам энергоматриц. Практическая проверка проводилась в натуре на придомовом участке, в шахтах лестниц и лифтов, в квартирах. Установлено также, что в зонах пересечения архитектурных форм полями (смена знака эпюры напряженности поля) наиболее проявляются разрушения конструкций. Так, в арках кирпичных зданий трещиноватость проявляется по диагонали от центра арки вверх.

В зонах повышенной интенсивности поля на выпуклых углах, особенно высоких зданий, чаще обрушивается кладка и цоколи. Деревья, посаженные при благоустройстве реконструируемых зданий, формой ствола описывают эквинапряженную линию объемного поля здания, причем чем дерево ближе к зданию, тем сильней проявляется этот эффект.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее