86300 (Дифференцирование в линейных нормированных пространствах)

2016-07-30СтудИзба

Описание файла

Документ из архива "Дифференцирование в линейных нормированных пространствах", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86300"

Текст из документа "86300"

Министерство образования и науки Российской федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Тюменский государственный университет

Институт математики и компьютерных наук

Кафедра информатики и математики

КУРСОВАЯ РАБОТА

По дисциплине «Математический анализ»

на тему:

Дифференцирование в линейных нормированных пространствах

Выполнила: студентка 393 гр.

Жукова И.А.

Проверил: доцент кафедры МиИ

Салтанова Т.В.

Тюмень 2010





Оглавление

Введение

Основные понятия

Сильный дифференциал (дифференциал Фреше)

Слабый дифференциал (дифференциал Гато)

Формула конечных приращений

Связь между слабой и сильной дифференцируемостью

Дифференцируемые функционалы

Абстрактные функции

Интеграл

Производные высших порядков

Дифференциалы высших порядков

Формула Тейлора

Заключение1

Список литературы:






Введение

Функциональный анализ — раздел математики, в котором изучаются бесконечномерные пространства и их отображения.

Понятие нормированного пространства – одно из самых основных понятий функционального анализа. Теория нормированных пространств была построена, главным образом, С. Банахом в 20-х годах 20 века. Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит дифференцирование линейных нормированных пространств.

Основные понятия

Определение 1. Непустое множество называется линейным пространством, если оно удовлетворяет следующим условиям:

Й. Для любых двух элементов однозначно определен элемент , называемый их суммой, причем

1. (коммутативность)

2. (ассоциативность)

В существует такой элемент 0, что для всех

4. Для каждого существует такой элемент , что .

II. Для любого числа и любого элемента определен элемент , причем

5.

6.

III. Операции сложения и умножения связаны между собой дистрибутивными законами:

7.

8.

Определение 2. Линейное пространство называется нормированным, если на нем задана неотрицательная функция , называемая нормой, удовлетворяющая условиям:





для любого и любого числа ;

для любых (неравенство треугольника).

Определение 3. Оператором называется отображение

,

где - это линейные пространства.

Определение 4. Оператор называется линейным, если для любых элементов и любых чисел R выполняется равенство:

Определение 5. Пусть - линейные нормированные пространства,

– линейный оператор,

Линейный оператор непрерывен в точке , если из того, что

следует, что .

Определение 6. Линейный оператор непрерывен, если он непрерывен в каждой точке .

Определение 7. Линейный оператор называется ограниченным, если

Утверждение. Для линейного нормированного пространства непрерывность линейного оператора равносильна его ограниченности.

Определение8. Наименьшая из констант M таких, что , называется нормой оператора А и обозначается .

В частности, выполняется

Справедливо следующее утверждение: для любого ограниченного линейного оператора

Сильный дифференциал (дифференциал Фреше)

Пусть X и У — два нормированных пространства и F — отображение, действующее из X в Y и определенное на некотором открытом подмножестве О пространства X. Мы назовем это отображение дифференцируемым в данной точке , если существует такой ограниченный линейный оператор Lx ж (X, Y), что для любого е> 0 можно найти д > 0, при котором из неравенства ||h||< д следует неравенство





|| F(x + h)-F(x)-Lxh ||<е||h|| (1)

То же самое сокращенно записывают так:

А(ч + р)-А(ч)-Дчр = щ(р)ю(2)

Из (I) следует, что дифференцируемое в точке х отображение непрерывно в этой точке. Выражение Lxh (представляющее собой, очевидно, при каждом h X элемент пространства У) называется сильным дифференциалом (или дифференциалом Фреше) отображения F в точке х. Сам линейный оператор Lx называется производной, точнее, сильной производной отображения F в точке х. Мы будем обозначать эту производную символом F'(x).

Если отображение F дифференцируемо в точке, то соответствующая производная определяется единственным образом. В самом деле, равенство

||L1h — L2h|| = o(h) для операторов

Li ж (X, У), i = 1, 2,

возможно, лишь если L1= L2.

Установим теперь некоторые элементарные факты, непоcредственно вытекающие из определения производной.

Если F(x) = y0 = const, то F'(x) = О (т. е. F'(х)

в этом случае есть нулевой оператор).

Производная непрерывного линейного отображения L есть само это отображение:





L '(x)=L (3)



Действительно, по определению имеем

L(x + h)-L(x) = L(h).

3. (Производная сложной функции). Пусть X, У, Z — три нормированных пространства, U(x0)—окрестность точки х0 Х, F — отображение этой окрестности в У, у0 = F(x0), V(yo) — окрестность точки у0 У и G — отображение этой окрестности в Z. Тогда, если отображение F дифференцируемо в точке хо, a G дифференцируемо в точке уо, то отображение Н = GF (которое определено в некоторой окрестности точки х0) дифференцируемо в точке хо и

H' (x0)=G' (y0)F' (x0) (4)

Действительно, в силу сделанных предположений

А(ч0 +о) = А(ч0) + Аэ (ч0) о +о1 (о ) и

G (уо + з) = G (уо) + G' (уо) з + о2 (з).

Но F'(x0) и G'(yo) — ограниченные линейные операторы. Поэтому

H (х0 + о) = G (уо + F' (x0) о + о1 о ) = G (уо) + G' (у0) (F' (х0) о + +о1 о)) +

2 (F' (x0) о + о1 (о )) = G (у0) + G' (уо) F' (х0) о + о3 (о).

Если F, G и Н — числовые функции, то формула (4) превращается в известное правило дифференцирования сложной функции.

4. Пусть F и G — два непрерывных отображения, действующих из X в Y. Если F и G дифференцируемы в точке х0, то и отображения F + G и aF (а — число) тоже дифференцируемы в этой точке, причем



(F + G)'(х0) = F'(х0) + G'(х0) (5)

(aF)'(x0) = aF'(x0).(6)

Действительно, из определения суммы операторов и произведения оператора на число сразу получаем, что

(F+G)(x0 + h) = F(x0 + h) + G(x0 + h) = F (х0) + G (х0) + F' (х0) h +

+G' (х0) h + o1 (h) и

aF (x0 + h) = aF (x0) + aF' (x0) h + o2 (h),

откуда следуют равенства (5) и (6).


Слабый дифференциал (дифференциал Гато)

Пусть снова F есть отображение, действующее из X в У. Слабым дифференциалом или дифференциалом Гато отображения F в точке х (при приращении h) называется предел

DF(x,h)= t=0= ,

где сходимость понимается как сходимость по норме в пространстве У.

Иногда, следуя Лагранжу, выражение DF(x,h) называют первой вариацией отображения F в точке х.

Слабый дифференциал DF(x,h) может и не быть линеен по h. Если же такая линейность имеет место, т. е. если





DF (х, h) = F'c (х) h,



где F'c (х) — ограниченный линейный оператор, то этот оператор называется слабой производной (или производной Гато).

Заметим, что для слабых производных теорема о дифференцировании сложной функции, вообще говоря, неверна.

Формула конечных приращений

Пусть О — открытое множество в X и пусть отрезок [х0, х] целиком содержится в О. Пусть, наконец, F есть отображение X в У, определенное на О и имеющее слабую производную F'c в каждой точке отрезка [х0, x]. Положив Дх = х — хо и взяв произвольный функционал У*, рассмотрим числовую функцию

f(t) = (F(x0+t Дх)),

определенную при .Эта функция дифференцируема по t. Действительно, в выражении

можно перейти к пределу под знаком непрерывного линейного функционала . В результате получаем

F'(t) = (F'c(x0+tДx) Дx)





Применив к функции f на отрезке [0, 1] формулу конечных приращений, получим

f(l) = f(0) + f'(и), где 0< и <1,

(F(x)-F(x0))= ( F'c(x0+ и Дx) Дx)(7)

Это равенство имеет место для любого функционала У* (величина и зависит, разумеется, от ). Из (7) получаем

| (F(x)-F(x0))| || F'c(x0+ и Дx)|| || Дx|| (8)

Выберем теперь ненулевой функционал так, что

(F (х) - F (х0)) = || || || F (х) - F (хо) ||

(такой функционал существует в силу следствия 4 теоремы Хана — Банаха (см. п. 3 § 1 гл. IV)). При этом из (8) получаем

||(F (х) - F (x)|| || F'c(x0+ и Дx)|| ||Дx|| (Дx =x-x0) (9)

Это неравенство можно рассматривать как аналог формулы конечных приращений для числовых функций. Применив формулу (9) к отображению

х —Ю А (х) — Аэс (хо) Дч

получим следующее неравенство:

||F(x-Fо)-F'c о) Дx || || F'c(xo+иДx) -F'c(x0) || || Дx || (10)





Связь между слабой и сильной дифференцируемостью

Сильная и слабая дифференцируемость представляют собой различные понятия даже в случае конечномерных пространств. Действительно, из анализа хорошо известно, что для числовой функции

f(x) = f(x1,…,xn)

при n 2 из существования производной

при любом фиксированном h = (f1,...,fn) еще не следует диф- ференцируемость этой функции, т. е. возможность представить ее приращение f(x+h)- f(x) в виде суммы линейной (по h) части и члена выше первого порядка малости относительно h.

Простейшим примером здесь может служить функция двух переменных

( 11)

Эта функция непрерывна всюду на плоскости, включая точку (0,0). В точке (0,0) ее слабый дифференциал существует и равен 0, поскольку

Вместе с тем этот дифференциал не является главной линейной частью приращения функции (11) в точке (0,0). Действительно, если положить h2=h12, то

Однако если отображение F имеет сильную производную, то оно имеет и слабую, причем сильная и слабая производные совпадают. Действительно, для сильно дифференцируемого отображения имеем

А(ч + ер) — А (ч) = Аэ (ч) (ер) + о (ер) = еАэ (ч)р +о (ер) и

Выясним условия, при которых из слабой дифференцируемости отображения F следует его сильная дифференцируемость.

Теорема 1. Если слабая производная F'c (х) отображения F существует в некоторой окрестности U точки х0 и представляет собой в этой окрестности (операторную) функцию от х, непрерывную в x0, то в точке x0 сильная производная F'(x0) существует и совпадает со слабой.

Доказательство. По е>0 найдем д>0 так, чтобы при ||h||< д бвыполнялось неравенство:

|| F'c(xo + h)-F'c(xo) || е

Применив к отображению F формулу (10), получим:

|| F(x0 + h)-F (хо) - F'c о) h || ||F'c(xo + иh)- F'c(xo)||

||h|| е||h||





Тем самым имеет место теорема 1, т. е. доказано как существование сильной производной F'(xо), так и ее совпадение со слабой производной.


Дифференцируемые функционалы

Мы ввели дифференциал отображения F, действующего из одного нормированного пространства X в другое нормированное пространство У. Производная F'(х) такого отображения при каждом х — это линейный оператор из X в У, т. е. элемент пространства о(X, У). В частности, если У — числовая прямая, то F — принимающая числовые значения функция на X, т. е. функционал. При этом производная функционала F в точке х0 есть линейный функционал (зависящий от х0), т. е. элемент пространства X*.

Пример. Рассмотрим в действительном гильбертовом пространстве Н функционал F(x) = ||х||2. Тогда

||x + h||2-||x||2 = 2(x, h) + || h ||2;

величина 2(x,h) представляет собой главную линейную (по h) часть этого выражения, следовательно,

F' (x) = F'c(x) = 2х.


Абстрактные функции

Предположим теперь, что к числовой прямой сводится пространство аргументов X. Отображение F(x), сопоставляющее числу х элемент некоторого банахова пространства У, называется абстрактной функцией. Производная F'(х) абстрактной функции (если она существует) представляет собой (при каждом х) элемент пространства У — касательный вектор к кривой F(x). Для абстрактной функции (представляющей собой функцию одного числового аргумента) слабая дифференцируемость совпадает с сильной.


Интеграл

Пусть F — абстрактная функция действительного аргумента t со значениями в банаховом пространстве У. Если F задана на отрезке [а, b], то можно определить интеграл функции F по отрезку [а,b]. Этот интеграл понимается как предел интегральных сумм

,

отвечающих разбиениям

ф = е0Бе1Б ююю Бет = иб ол хелбел+1ъб

при условии, что max(tk+1-tk) 0. Интеграл (представляющий, собой, очевидно, элемент из Y) обозначается символом

Рассуждения, в значительной мере аналогичные проводимым для функций, принимающих скалярные значения, показывают, что интеграл от функции, непрерывной на отрезке, существует; при этом он обладает свойствами обычного риманова интеграла.






Производные высших порядков

Пусть F — дифференцируемое отображение, действующее из X в У. Его производная F'(x) при каждом x X есть элемент из о (X, У), т. е. F' есть отображение пространства X в пространство линейных операторов о (Х, У). Если это отображение дифференцируемо, то его производная называется второй производной отображения F и обозначается символом F". Таким образом, F"(x) есть элемент пространства о (Х, о (Х, У)) линейных операторов, действующих из X в о (X, У). Покажем, что элементы этого пространства допускают более удобную и наглядную интерпретацию в виде так называемых билинейных отображений.

Мы говорим, что задано билинейное отображение пространства X в пространство У, если каждой упорядоченной паре элементов х, х' из X поставлен в соответствие элемент у=В(х, х') У так, что выполнены следующие условия:

1. для любых из X и любых чисел имеют место равенства:

В ( x1 + х2, ) = В ( , )+ В (х2, ),

В (x1, + ) = В ( , )+ В(x1, );

2. существует такое положительное число М, что

||В(х, х') || M||x|| ||x’|| (17)

при всех х, х' X.

Первое из этих условий означает, что отображение В линейно по каждому из двух своих аргументов; нетрудно показать, что второе условие равносильно непрерывности В по совокупности аргументов.

Наименьшее из чисел М, удовлетворяющих условию (17), называется нормой билинейного отображения В и обозначается ||В||.

Линейные операции над билинейными отображениями определяются обычным способом и обладают обычными свойствами.

Таким образом, билинейные отображения пространства X в пространство У сами образуют линейное нормированное пространство, которое мы обозначим В(Х2, У). При полноте У полно и В(Х2, У).

Каждому элементу А из пространства о(Х,о(Х,У)) можно поставить в соответствие элемент из В(Х2, У), положив

В(х, х') = (Ах)х'.(18)

Очевидно, что это соответствие линейно. Покажем, что оно также и изометрично и отображает пространство о(X,о(Х,У)) на все пространство B(X2,Y). Действительно, если у=В(х, х') = (Ах)х', то

||y|| ||Ax|| ||x’|| ||A|| ||x|| ||x’||,

откуда

||B|| ||A||(19)

С другой стороны, если задано билинейное отображение В, то при фиксированном x Xотображение

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее