85009 (Численные методы), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Численные методы", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85009"

Текст 3 страницы из документа "85009"

Приведение матрицы А к нормальной форме Фробениуса Р осуществляется последовательно построкам, начиная с последеней строки.

Приведем матрицу А

подобным преобразование к виду

Пусть Можн проверить,что такой вид имеет матрица , которая равна

где

Слудующий шаг - приведение матрицы подобным преобразованием к виду , где и вторая снизу строка имеет единицу в -ом столбце, а все остальные элементы строки равны нулю:

Если то можно проверить, что такой вид имеет матрица :

где

Таким образом

Далее процедура аналогичная, если на кождом шаге в очередной строке, на месте которого подобным преобразованием нужно получить единицу, не равную нулю.

В этом случае ( будем называт его регулярным ) нормальная формула Фробениуса будет получена за ( m-1 ) шагов и будет иметь вид

Рассмотрим нерегулярный случай, когда матрица, полученная в результате подобных преобразований приведена уже к виду

и элемент . Таким образом обычная процедура метода Данилевского не подходит из-за необходимости деления на ноль.

В этой ситуации возможно два случая. В первом случае к-й

строке левее элемента есть элемент

Тогда домножая матрицу слева и справа на элементарную матрицу перестановок , получаем матрицу

,

у которой по сравнению с матрицей переставлены l -я и (k-1 )-я строка l-й и ( k-1)- й стодбец. В результате на необходимом нам месте оказывается ненулевой элемент , уже преобразованная часть матрицы не меняется, можно применять обычный шаг метода Данилевского к матрице . Она подбна матрице (и, следовательно, исходной матрице А ), т.к. елементарная матрица перестановок совпадает со своей обратной, т.е.

Рассмотрим второй нерегулярный случай, когда в матрице ýлемент и все элементы этой строки, которые тоже находятся левее его, тоже равны нулю. В этом случае характеристический определитель матрицы можно представить в виде

где і - единичные матрицы соответствующей размерности, а квадратные матрицы и имееют вид:

Обративм внимание на то, что матрица уже нормальную форму Фробениуса, и поэтому сомножитель просто развертывается в виде многочлена с коэффциентами, равными элементам первой строки.

Сомножитель , åñòü характеристический определитель матрицы . Для развертывания можн опять применять метод Данилевского, приводя матрицу подобными преобразованиями к нормальной форме Фробениуса.

Предположим теперь, что матрица А подобным преобразованиям

уже приведена к нормальной форме Фробениуса. Решая характеристическое уравнение

,

находим одним из известных методов его корни которые являются собственными значениями матрицы Р и исходной матрицы А.

Теперь стоит задача отыскать собственные векторы, соответствующие этим собственным значениям, т.е. векторы такие, что

Решим ее следующим образом: найдем собственные векторы матрицы Р , а затем по определенному соотношению я пересчитаем собственные векторы матрицы А . Это соотношение дает следующая теорема.

ТЕОРЕМА. Пусть є есть собственное значение , а есть соответствующий собственный вектор матрицы Р , которая подобна матрице А ,т.е.

Тогда есть собственный вектор матрицы А , соответствующий собственному значению

Доказательство.Тривиально следует из того, что

Домножая левую и правую часть этого равенства слева на S ,

имеем

А это и означает, что -собственный вектор матрицы А ,

отвечающий собственному значению

Íàéäåì ñîáñòâåííûé вектор матрицы Р , которая имеет нормальную форму Фробениуса и подобна матрице А. Записывая в развернутой форме, имеем

или

В этой системе одна из переменных может быть сделана свободной и ей может быть придано произвольное значение. В качестве таковой возьмем и положим

Тогда последовательно находим

,

т.е. искомый собственный вектор матрицы Р имеет вид

.

Если процесс приведения матрицы А к форме Р был регулярным, то

 ñîîòâåòñòâèè ñ òåîðåìîé ñîáñòâåííûì âåêòîðîì ìàòðèöû А для собственного значения будет вектор

Таким образом, задача вычисления собственных векторов матрицы А решена.

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ .

Пусть имеется функция которую необходимо продифференцировать несколько раз и найти эту производную в некоторой точке.

Если задан явный вид функции, то выражение для производной часто оказывается достаточно сложным и желательно его заменить более простым. Если же функция задана только в некоторых точках (таблично), то получить явный вид ее производных ввобще невозможно. В этих ситуациях возникает необходимость приближенного (численного) дифференцирования.

Простейшая идея численного дифференцирования состоит в том, что функция заменяется интерполяционным многочленом (Лагранжа, Ньютона) и производная функции приближенного заменяется соответствующей производной интерполяционного многочлена

Рассмотрим простейшие формулы численного дифференцирования, которые получаются указанным способом.

Будем предполагать, что функция задана в равностоящих узлах


Ее значения и значения производных в узлах будем обозначать

Пусть функция задана в двух точках и ее значения

Посстроим интерполяционный многочлен первой степени

Производная равна

Производную функцию в точке приближенно заменяем производной интерполяционного многочлена

(1)

Величина называется первой разностной производной.

Пусть задана в трех точках

Интерполяционный многочлен Ньютона второй степени имеет вид

Берем производную

В точке она равна

Получаем приближенную формулу

(2)

Величина называется центральной разностной производной.

Наконец, если взять вторую производную

получаем приближенную формулу.

(3)

Величина называется второй разностной производной.

Формулы (1)-(3) называются формулами численного дифференцирования.

Предполагая функцию достаточное число раз непрерывно дифференцируемой, получим погрешности приближенных формул (1)-(3).

В дальнейшем нам понадобится следующая лемма.

Лемма 1. Пусть произвольные точки, Тогда существует такая точка что

Доказательство. Очевидно неравенство

По теореме Больцано-Коши о промежуточных значениях непрерывной функции на замкнутом отрезке она принимает все значения между и Значит существует такая точка что выполняет указанное в лемме равенство.

Погрешности формул численного дифференцирования дает следующая лемма.

Лемма 2.

1.Предположим, что Тогда существует такая точка , что

(4)

  1. Если то существует такая точка , что

(5)

  1. Когда то существует такая, что

(6) Доказательство. По формуле Тейлора

откуда следует (4).

Если то по формуле Тейлора

(7)

где

Подставим (7) в Получаем

Заменяя в соответствии с леммою 1

получаем

Откуда и следует (6).

Равенство (5) доказывается аналогично ( доказательство провести самостоятельно).

Формулы (4)-(6) называются формулами численного дифференцирования с остаточными членами.

Погрешности формул (1)-(3) оцениваются с помощью следующих неравенств, которые вытекают из соотношений (4)-(6):

Говорят, что погрешность формулы (1) имеет первый порядок относительно (или порядка ), а погрешность формул (2) и (3) имеет второй порядок относительно (или порядка ). Также говорят, что формула численного дифференцирования (1) первого порядка точности (относительно ), а формулы (2) и (3) имеют второй порядок точности.

Указанным способом можно получать формулы численного дифференцирования для более старших производных и для большего количества узлов интерполирования.

Выбор оптимального шага. Допустим, что граница абсолютной погрешности при вычислении функции в каждой точке удовлетворяет неравенству

(8)

Пусть в некоторой окрестности точки производные, через которые выражаются остаточные члены в формулах (5), (6), непрерывны и удовлетворяют неравенствам

(9)

где - некоторые числа. Тогда полная погрешность формул (2), (3) (без учета погрешностей округления) в соответствии с (5), (6), (8), (9)не превосходит соответственно величин

Минимизация по этих величин приводит к следующим значениям :

(12)

при этом

(13)

Если при выбранном для какой-либо из формул (2), (3) значении отрезок не выходит за пределы окрестности точки , в которой выполняется соответствующее неравенство (9), то найденное есть оптимальным и полная погрешность численного дифференцирования оценивается соответствующей величиной (13).

ИНТЕРПОЛИРОВАНИЕ СПЛАЙНАМИ.

Интерполирование многочленом Лагранжа или Ньютона на отрезке с использованием большого числа узлов интерполяции часто приводит к плохому приближению, что объясняется сильным накоплением погрешностей в процессе вычислений. Кроме того из-за расходимости процесса интерполяции увеличение числа узлов не обязано приводить к повышению точности. Для того, чтобы избежать больших погрешностей, весь отрезок разбивают на частичные отрезки и на каждом из частичных отрезков приближенно заменяют функцию многочленом невысокой степени ( так называемая кусочно-полиномиальная интерполяция).

Одним из способов интерполяции на всем отрезке является интерполирование с помощью сплайн-функций. Сплайн-функцией или сплайном называют кусочно-полиномиальную функцию, определенную на отрезке и имеющую на этом отрезке некоторое число непрерывных производных.

Слово ,,сплайн’’ (английское spline) означает гибкую линейку, используемую для проведения гладких кривых через заданные точки плоскости.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее