50301 (Графы и их представление на ЭВМ), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Графы и их представление на ЭВМ", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "50301"

Текст 3 страницы из документа "50301"

4.1 Требования к представлению графов

Известны различные способы представления графов в памяти компьютера, которые различаются объемом занимаемой памяти и скоростью выполнения операций над графами. Представление выбирается, исходя из потребностей конкретной задачи. Далее приведены четыре наиболее часто используемых представления с указанием характеристики п(р, q) — объема памяти для каждого представления. Здесь р - число вершин, а q - число ребер. Указанные представления пригодны для графов и орграфов, а после некоторой модификации также и для псевдографов, мультиграфов и гиперграфов.

1. Матрица смежности. Представление граф с помощью квадратной булевской матрицы, отражающей смежность вершин, называется матрицей смежности,

M : array [1..p, 1..p] of 0..1,

M [i, j] = 1, если вершина vi смежна с вершиной vj

0, если вершины не vi и vj смежны.

Для матрицы смежности п(р, q) = O(p2).

2. Матрица инциденций. Представление графа с помощью матрицы H : array [1..p, 1..q] of 0..1 (для орграфов H : array [1..p, 1..q] of -1..1), отражающей инцидентность вершин и рёбер, называется матрицей инциденций, где для неориентированного графа

H [i, j] = 1, если вершина vi инцидентна ребру ej,

0, в противном случае.

а для ориентированного графа

1, если вершина vi инцидентна ребру ej и является его концом,

H [i, j] = 0, если вершина vi и ребро ej не инцидентны,

-1, если вершина vi инцидентна ребру ej и является его началом

3. Списки смежности. Представление графа с помощью списочной структуры, отражающей смежность вершин и состоящей из массива указателей Г : array [1..р] оf N на списки смежных вершин (элемент списка представлен структурой N : record v: 1..р; п : N endrecord), называется списком смежности. В случае представления неориентированных графов списками смежности п(р, q) = О(р + 2q), а в случае ориентированных графов п(р, q) = О(р + q).

4. Массив дуг. Представление графа с помощью массива структур Е : array [1..р] of record b,e : 1..p endrecord, отражающего список пар смежных вершин, называется мас сивом ребер (или, для орграфов, массивом дуг). Для массива ребер (или дуг) п(р, q) = О( 2q).

5. Обход графа — это некоторое систематическое перечисление его вершин (и/или ребер). Наибольший интерес представляют обходы, использующие локальную информацию (списки смежности). Среди всех обходов наиболее известны поиск в ширину и в глубину. Алгоритмы поиска в ширину и в глубину лежат в основе многих конкретных алгоритмов на графах.

ТЕОРЕМА Если граф G связен (и конечен), то поиск в ширину и поиск в глубину обойдут все вершины по одному разу.

Доказательство

1. Единственность обхода вершины. Обходятся только вершины, попавшие в Т. В Т попадают только неотмеченные вершины. При попадании в Т вершина отмечается. Следовательно, любая вершина будет обойдена не более одного раза.

  1. Завершаемость алгоритма. Всего в Т может попасть не более р вершин. На каждом шаге одна вершина удаляется из Т. Следовательно, алгоритм завершит работу не более чем через р шагов.

  2. Обход всех вершин. От противного. Пусть алгоритм закончил работу, и вер шина w не обойдена. Значит, w не попала в Т. Следовательно, она не былаотмечена. Отсюда следует, что все вершины, смежные с w, не были обойденыи отмечены. Аналогично, любые вершины, смежные с неотмеченными, самине отмечены (после завершения алгоритма). Но G связен, значит, существуетпуть (v,w). Следовательно, вершина v не отмечена. Но она была отмечена напервом шаге.

4.2 Реализация алгоритмов поиска в ширину и в глубину в программной среде Turbo Pascal

Задача состоит в том, найти путь из вершины A в вершину B. Будем задавать граф матрицей смежности, т.е. квадратной таблицей NxN, в которой на пересечении i-й строки и j-го столбца значение TRUE, если i и j соединены ребром, и FALSE в противном случае.

Поиск в ширину.

Подобно тому как, согласно принципу Гюйгенса, каждая точка волнового фронта является источником вторичной волны, мы, отправляясь из заданной вершины A, посещаем все смежные с ней вершины (т.е. вершины, в которые ведут стрелки из A). Каждая посещенная вершина становится источником новой волны и т.д. При этом необходимо позаботиться о том, чтобы не вернутся в ту вершину, в которой уже были. Для реализации алгоритма понадобятся: матрица m[1..n, 1..n] - матрица смежности графа; вспомогательный массив queue[1..n], в котором будет формироваться очередь, т.е. тип данных первый вошел – первый вышел (FIFO). Размер его достаточен, так как мы не посещаем вершины дважды. С массивом queue связаны две переменные - head и tail. В переменной head будет находиться номер текущей вершины, из которой идет волна, а при помощи переменной tail новые вершины помещаются в "хвост" очереди queue; вспомогательный массив visited[1..n], который нужен для того, чтобы отмечать уже пройденные вершины (visited[i]=TRUE вершина i пройдена); вспомогательный массив prev[1..n] для хранения пройденных вершин. В этом массиве и будет сформирован искомый путь; переменная f, которая примет значение TRUE, когда путь будет найден. Кроме того, мы введем несколько вспомогательных переменных, которые понадобятся при организации циклов.

Program breadth_first_search;

Const n=9;

m:array[1..n, 1..n] of boolean =

(

(False, True, True, False, False, False, False, False,

False),

(True, False, True, False, False, False, True, True,

False),

(True, True, False, True, True, False, False, False,

False),

(False, False, True, False, True, False, False, False,

False),

(False, False, True, True, False, True, False, True,

False),

(False, False, False, False, True, False, True, True, True

),

(False, True, False, False, False, True, False, True, True

),

(False, True, False, False, True, True, True, False,

False),

(False, False, False, False, False, True, True, False, False)

);

Var A, B: integer;

Procedure A_to_B(A, B: integer);

Var

Visited: array[1..n] of boolean;

Prev: array[1..n] of integer;

c: array[1..n] of integer;

head, tail: integer;

f: boolean;

i, v, k: integer;

Begin

head:=1;

tail:=1;

f:=False;

For i:=1 to n do

Begin

Visited[i]:=False;

Prev[i]:=0

End;

C[tail]:=A;

Visited[A]:=True;

While (head<=tail) and not f do

Begin

v:=C[head];

head:=head+1;

For k:=1 to n do

if m[v, k] and not Visited[k] then

Begin

tail:=tail+1;

C[tail]:=k;

Visited[k]:=True;

Prev[k]:=v;

if k=B then

Begin

f:=true;

break

End

End

End;

if f then

Begin

k:=B;

Write(B);

While Prev[k]<>0 do

Begin

Write('<-', Prev[k]);

k:=Prev[k]

end

End

else

Write('Пути из ', A, ' в ', B, ' нет')

end;

Begin

Write('A= '); readln(A);

Write('B= '); readln(B);

A_to_B(A, B)

End.

Поиск в глубину.

Идея поиска в глубину проста: отправляясь от текущей вершины, мы находим новую (еще не пройденную) смежную с ней вершину, которую помечаем как пройденную и объявляем текущей. После этого процесс возобновляется. Если новой смежной вершины нет (тупик), возвращаемся к той вершине, из которой попали в текущую, и делаем следующую попытку. Если попадем в вершину B, печатаем путь. Если все вершины исчерпаны - такого пути нет. Заметим, что построенный таким образом алгоритм способен находить все пути из A в B, но первый найденный необязательно должен быть кратчайшим. Как обычно, алгоритм с возвратами легче всего оформить с помощью рекурсивной процедуры. Для ее реализации нам понадобятся: матрица m[1..n, 1..n] - матрица смежности графа; вспомогательный массив visited[1..n], который мы будем для того, чтобы отмечать уже пройденные вершины (visited[i]=TRUE вершина i пройдена); переменная f, которая примет значение TRUE, когда путь будет найден.

Program depth_first_search;

Const n=9;

m:array[1..n, 1..n] of boolean =

(

(False, True, True, False, False, False, False, False,

False),

(True, False, True, False, False, False, True, True,

False),

(True, True, False, True, True, False, False, False,

False),

(False, False, True, False, True, False, False, False,

False),

(False, False, True, True, False, True, False, True,

False),

(False, False, False, False, True, False, True, True, True

),

(False, True, False, False, False, True, False, True, True

),

(False, True, False, False, True, True, True, False,

False),

(False, False, False, False, False, True, True, False, False)

);

Var A, B: integer;

Procedure A_to_b(A, B: integer);

Var

Visited: array[1..n] of boolean;

f: boolean;

i: integer;

Procedure Depth(p: integer);

var k: integer;

Begin

Visited[p]:=True;

For k:=1 to n do

If not f then

If m[p, k] and not Visited[k] then

If k=B then

Begin

f:=True;

Write(B);

Break

End

else Depth(k);

If f then write('<=', p);

End;

Begin

For i:=1 to n do Visited[i]:=False;

f:=false;

Depth(A);

If not f then write('Пути из ', A, ' в ', B, ' нет')

End;

Begin

write('A= '); readln(A);

write('B= '); readln(B);

A_to_B(A, B)

End.

Заключение

Курсовой проект выполнен на тему «Графы и их представление на ЭВМ». В нём рассмотрены следующие вопросы:

  • Определение графов: основное определение, смежность, другие определения;

  • Способы задания графов: изображение графа, способы численного представления графов, представление ориентированных граф;

  • Виды графов и операции над ними: элементы графов, изоморфизм графов, тривиальные и полые графы, двудольные графы, направленные орграфы и сети, операции над графами;

  • Представление графов в ЭВМ: требование к представлению графов, реализация алгоритмов поиска в глубину и ширину в программной среде Turbo Pascal;

На основании найденной информации (учебная литература, Internet), я выделил основные пункты, которые наиболее полно и точно дают представление о графах и их представлении на ЭВМ. При выполнении работы были приведены примеры графов, а также различные способы их задания и представлены на основании заданных графов соответствующие им матрицы смежности и инцидентности. Были исследованы свойства операций над графами и к некоторым их них составлены графические изображения. В последней главе необходимо было указать на связь между графами и их представлением на ЭВМ, особенно это важно, на мой взгляд, для специальности математика-программиста.

После проделанной работы можно сделать следующий вывод:

Графы широко используются как в самой математике, так и в ее приложениях. Они применяются при построении различных математических моделей: линий электропередачи, сетей автодорог, линий воздушных сообщений и пр.

Список использованной литературы

  1. Дискретная математика для программистов / Ф.А.Новиков. – СПб.: Питер, 2002. – 304 с.

  2. Судоплатов С.В., Овчинникова Е.В. Элементы дискретной математики: Учебник. – М.: ИНФРА-М, Новосибирск: Изд-во НГТУ, 2002. – 280 с. – (Серия «Высшее образование»)

  3. Материал из Википедии — свободной энциклопедии. Элементы теории граф (http://referats/mat_graph);

  4. Элементы теории граф (http://book.itep.ru/10/graph1021.htm).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее