49466 (Экономико-математическая модель), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Экономико-математическая модель", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49466"

Текст 2 страницы из документа "49466"

Выводы: стандартные отклонения выборок исходных данных по сравнению со значениями самих данных велики, т.е. разброс точек в выборках большой.

Отклонения максимальных и минимальных значений выборок от соответствующих медиан и среднего также велики. Это означает , что точки выборок расположены рассеяно.

Значения коэффициента вариации выборок позволяет судить об их неоднородности.

3. Корреляционный анализ данных.

На этом этапе осуществляется парное сравнение выборки результирующего показателя с выборками показателей, которые согласно теоретической модели рассматриваются как факторные, а также проверяется степень коррелируемости факторных показателей. Для этих целей строят и анализируют матрицы парных линейных коэффициентов корреляции r, которые изменяются от -1 до 1. Анализ применим лишь в случае линейной зависимости между признаками. Чем ближе значения коэффициента корреляции к -1 или к 1, тем выше степень коррелируемости соответствующих случайных величин. Однако, при r, близких к 1 или -1, регрессионные связи между соответствующими величинами устанавливаться не могут, так как эта ситуация означает фактически функциональную взаимосвязь показателей.

Значимость (существенность) линейного коэффициента корреляции проверяют на основе t-критерия Стьюдента. При этом выдвигается и проверяется нулевая гипотеза о равенстве коэффициента нулю, т.е. об отсутствии связи между х и у. Для этого определяется расчетное значение критерия:

(1)

где r – коэффициент корреляции,

n – число наблюденеий,

σr – среднее квадратическое отклонение кэффициента корреляции.

и сопоставляется с tтабличное с заданными параметрами (уровнем значимости α, принимается обычно за 0,05, и числом степеней свободы υ = n – 2, где n – число наблюдений).

Если tрасчетное › tтабличное , то нулевая гипотеза отвергается и линейный коэффициент считается значимым, а связь между х и у – существенной, если же неравенство обратное, то связь между х и у отсутствует.

Вообще говоря, отсутствие корреляционной связи между факторным признаками и наличие тесной связи (значение парных коэффициентов корреляции )между результативным и факторными признаками – условие включения этих факторных признаков в регрессионную модель.

Кроме того, при построении модели регрессии необходимо учитывать проблему мультиколлениарности (тесной зависимости между факторными признаками), которая существенно искажает результаты исследования.

Одним из индикаторов определения наличия мультиколлинеарности между факторными признаками является превышение величины парного коэффициента корреляции 0,8 (r ≤ 0,8).

 

сырье,м погонный

затраты на заработную плату,т.руб.

материальные затраты,

тыс.руб

амортизация,

тыс.руб.

полная себесто-

имость,

тыс.руб

сырье,м погонный

1

затраты на заработную плату,т.руб.

0,349630305

1

материальные затраты,

тыс.руб

0,830118488

0,587647564

1

амортизация,

тыс.руб.

0,377214053

0,759164207

0,612169366

1

полная себестоимость,

тыс.руб

0,678604269

0,909886866

0,825715323

0,8247215

1

Таблица 3

Для определения наличия мультиколлениарности и устранения мультиколлениарных признаков была построена и проанализирована матрица парных коэффициентов корреляции, см. таблица 3.

Матрица парных коэффициентов корреляции

Расчет производился в оболочке «Excel», Сервис → Анализ данных → Корреляция.

Из таблицы 3 видно, что между факторными признаками Сырье и Материальные затраты коэффициент корреляции больше 0,8. Для устранения мультиколлинеарности необходимо исключить из корреляционной модели один из этих признаков, расчеты приведены в таблицах 4 и 5.

Матрица парных коэффициентов корреляции для модели без «Материальных затрат»

 

сырье, м погонный

затраты на оплату труда,

тыс.руб.

амортизация,

тыс.руб.

полная себестоимость,

тыс.руб

сырье, м погонный

1

затраты на оплату труда, тыс.руб.

0,349630305

1

амортизация, тыс.руб.

0,377214053

0,759164207

1

полная себестоимость, тыс.руб

0,678604269

0,909886866

0,824721504

1

Таблица 4

Матрица парных коэффициентов корреляции для модели без «Сырья»

 

затраты на оплату труда,

тыс.руб.

материальные затраты,

тыс.руб

амортизация,

тыс.руб.

полная себестоимость,

тыс.руб

затраты на оплату труда ,тыс.руб.

1

материальные затраты, тыс.руб

0,587647564

1

амортизация,

тыс.руб.

0,759164207

0,612169366

1

полная себестоимость,

тыс.руб

0,909886866

0,825715323

0,824721504

1

Таблица 5

В обеих моделях теперь отсутствует проблема мультиколлениарности, т.к. все парные коэффициенты между факторными признаками < 0,8.

Так как коэффициент корреляции r между результативным и факторными признаками больше > 0,3, то все признаки дальше участвуют в анализе.

Какую из этих двух модель необходимо выбрать покажет дальнейший анализ.

Для определения признаков рассчитали tрасчетное и взяли tтабличное, см. таблицы 6 и 7.

Матрица расчетных значений t – критерия Стьюдента

для модели без «Материальных затрат»

 

сырье, м погонный

затраты на оплату труда, тыс.руб.

амортизация, тыс.руб.

полная себестоимость, тыс.руб

сырье, м погонный

Затраты

на оплату труда,

тыс.руб.

1,237707018

амортизация,

тыс.руб.

1,350871631

3,868284073

полная себестоимость, тыс.руб

3,064211348

7,274210595

4,836609752

 

tтабличное

2,200985159

Таблица 6

Матрица расчетных значений t – критерия Стьюдента

для модели без «Сырья»

 

затраты на оплату труда,тыс.руб.

материальные затраты, тыс.руб

амортизация, тыс.руб.

полная себестоимость

,тыс.руб

затраты на оплату труда тыс.руб.

материальные затраты, тыс.руб

2,408806699

амортизация,

тыс.руб.

3,868284073

2,567683844

полная себестоимость,

тыс.руб

7,274210595

4,854902951

4,836609752

 

tтабличное

2,200985159

Таблица 7

Расчет производился в оболочке «Excel» вручную по формуле (1), tтабличное рассчитывалось с помощью функции СТЬЮДРАСПОБР исходя из той же формулы.

Выводы: в результате сравнения tрасчетное и tтабличное выяснилось, что с вероятностью 0,95 можно утверждать , что связь между результативным и факторными признаками является существенной (tрасчетное › tтабличное), неслучайной. Какую из этих двух модель лучше выбрать покажет дальнейший анализ.

4. Регрессионный анализ данных.

На этом этапе, используя метод наименьших квадратов, строится многофакторная регрессионная зависимость(уравнение регрессии) результирующего показателя от оставшейся после предшествующих шагов анализа факторных показателей.

Линейная модель ,содержащая независимые переменные только в первой степени, имеет вид:

(2)

где а0 – свободный член,

а1…аn – параметры уравнения (коэффициенты регрессии),

х1….хn – значения факторных признаков.

Параметры уравнения регрессии рассчитываются методом наименьших квадратов , при этом решается система нормальных уравнений с к+1 неизвестными.

Для измерения степени совокупности влияния отобранных факторов на результативный признак рассчитывают совокупный коэффициент детерминации R2 и совокупный коэффициент множественной корреляции R – общие показатели тесноты связи признаков. Пределы изменения : 0 ≤ R ≥ 1. Чем ближе R к 1 , тем точнее уравнение множественной линейной регрессии отражает реальную связь.

Проверка значимости моделей, построенных на основе уравнений регрессии, начинается с проверки значимости каждого коэффициента регрессии. Значимость коэффициента регрессии осуществляется с помощью t – критерия Стьюдента ( отношение коэффициента регрессии к его средней ошибке):

(3)

Коэффициент регрессии считается статистически значимым , если tрасчетное › tтабличное с заданными параметрами (уровнем значимости α, = 0,05, и числом степеней свободы υ = n - к -1, где n – число наблюдений, к – число факторных признаков).

Проверка адекватности модели осуществляется с помощью F – критерия Фишера и величины средней ошибки аппроксимации, которая не должна превышать 12 – 15% . Если величина Fрасчетное > Fтабличное , то связь признается существенной. Fтабличное находиться при заданном уровне значимости α = 0,05 и числе степеней свободы v1 =k и v2 = n-k-1. (4)

Модель без учета «Материальных затрат»

В таблице 8 сгенерированы результаты по регрессионной статистике.

Регрессионная статистика

Множественный R

0,997434896

R-квадрат

0,994876372

Нормированный R-квадрат

0,993168496

Стандартная ошибка

2219,306976

Наблюдения

13

Таблица 8

Эти результаты соответствуют следующим статистическим показателям:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4125
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее