49008 (Сканеры: виды, устройство, принципы работы), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Сканеры: виды, устройство, принципы работы", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49008"

Текст 3 страницы из документа "49008"

Также использует данные, полученные прямо в процессе сканирования. С ее помощью считывается с оригинала и «удаляется» из оцифрованного изображения шум, вызванный зерном пленки. Зерно фотопленки - это группы кристаллов галогенида серебра, из которых состоит светочувствительная фотоэмульсия. Зерно пленки доступно разрешению слайд-сканера, легко воспроизводится на мониторе при просмотре изображения и неизбежно приводит к уменьшению детализации изображения и ощутимому ухудшению его качества. Поэтому возможность получить резкое и четкое изображение без следов зернистости пленки не менее полезна, чем восстановление истинных цветов и оттенков.

Технология Digital ROC и Digital GEM уже в 2001 году были воплощены в слайд-сканере Dimage Scan Multi II от Minolta.

2.4 Digital ICE3

Комбинация этих трех технологий. Слайд-сканер с интегрированными тремя технологиями автоматически обеспечивает превосходный, качественный результат сканирования и у профессионалов, и у любителей. Эти три технологии планируется реализовывать не только в сканерах, но и в цветных копирах, устройствах печати фотокопий и других цифровых устройствах ввода/вывода, где качество изображения и реальность цветов для конечного потребителя первостепенны. В планшетных сканерах можно реализовывать одновременно две технологии - Digital ROC и Digital ICE. Конечно, сканирование с автоматическими улучшениями Digital ROC, Digital GEM и Digital ICE занимает и гораздо больше времени, чем простое сканирование. Но что эти лишние минуты по сравнению с теми часами, которые вы затратили на последующую коррекцию изображения. Однако сканирование с такими функциями (даже с одной, а с двумя-тремя и подавно) предъявляет высокие требования к системным ресурсам: к объему оперативной памяти, свободному месту на жестком диске и т.п.



3. Сравнение новой технологии CIS (Contact Image Sensor) с традиционной CCD (Charge Couple Device)

В большинстве современных сканеров для получения данных об изображении применяется приемный элемент, называемый CCD (Charge-Coupled Device, прибор с зарядовой связью - ПЗС). Эта технология известна уже много лет и используется также в аппаратах факсимильной связи, видеокамерах и других устройствах. В некоторых новых сканерах начинает использоваться другой тип приемного элемента, называемый CIS (Contact Image Sensor). Этот элемент состоит из линейки датчиков, непосредственно воспринимающих световой поток от оригинала, причем линейка имеет ширину, равную ширине рабочей области сканера, а оптическая система – зеркала, призма, обьектив – полностью отсутствует.

Настоящий раздел дипломной работы сравнивает преимущества двух технологий и приводит примеры отсканированных изображений.

Таблица 1. CCD и CIS – сравнительная таблица.

Charge-Coupled Device (CCD)

Contact Image Sensor (CIS)

(1)

Лучшая глубина резкости

Глубина резкости CCD сканеров в 10 раз больше (+/-3 мм), чем CIS сканеров (+/-0.3мм). Это означает что с CCD сканером 3х-мерные обьекты или даже книги и журналы будут отсканированы с хорошей резкостью, но при сканировании CIS сканером изображение зачастую будет размытым и нерезким.

(1)

Меньшие размеры и вес

Отсутствие оптической системы и зеркал позволяет CIS сканерам иметь меньшие тольщину и вес, чем их конкуренты с CCD-элементом.

(2)

Лучшая чувствительность к оттенкам

CCD сканеры различают уровни оттенков +/-20%, тогда как CIS сканеры определяют различия в оттенках только +/-40%. Для пользователя это означает, что передача деталей оттенков будет лучше у CCD сканеров.

(2)

Уменьшение затрат на производство

CIS-элементы заменяют целый набор компонентов сканера, уменьшая стоимость производства.

(3)

Дольше срок службы сканера

CCD сканеры обеспечивают стабильно высокое качество сканирования в течение более 10,000 часов. У существующих в настоящее время CIS сканеров наблюдается падение яркости в среднем на 30% после всего 500 часов работы.

(4)

Разрешающая способность

В настоящее время существуют профессиональные CCD сканеры с оптическим разрешением 3000 точек на дюйм. В CIS технологии оптическое разрешение в настоящее время ограничено 300 dpi.

(5)

Хорошо развитая технология

В течение многих лет были проданы миллионы сканеров и факсов с CCD элементами. CIS сканеры появились только несколько месяцев назад. И, хотя CIS элементы для факсов существуют уже много лет, только около половины производителей факсов перешли на них, несмотря на низкую цену.

3.1 Сравнение результатов сканирования при использовании CCD и CIS элементо

Все образцы были отсканированы с разрешением 300 dpi (режим RGB) при использовании установок сканирования, принятых по умолчанию. На рабочую поверхность сканеров были помещены часы и журнал, при этом дополнительного прижима образцов (кроме обеспечиваемого крышками сканеров) не производилось.

Charge-Coupled Device (CCD)

Contact Image Sensor (CIS)

Сканирование CCD элементом

Сканирование CIS элементом

Оба изображения – непосредственные результаты сканирования, уменьшенные до ширины 150 пикселей с разрешением 72ppi. Качество изображений не улучшалось ни в какой программе обработки изображений



4. Принцип ПЗС-технологии

Вскоре после того, как был изобретен транзистор и, впоследствии, планарная технология, полупроводниковые приборы заменили вакуумные либо были близки к этому почти во всех областях электроники, за исключением трех, еще долго не поддававшихся "кремнизации" - генераторные лампы для мощных передатчиков, высоковольтные приборы (кенотроны, рентгеновские трубки...) и приборы для ТВ - кинескопы и передающие трубки.

Достаточно сказать, что процессор Пентиум с его 5 миллионами транзисторов потребляет энергии меньше, чем один ламповый триггер, а о массогабаритных показателях, механической стойкости и сроке службы можно не упоминать. Ничего удивительного, что попытки создать твердотельный аналог передающей трубки - после изобретения компанией Texas Instruments планарной технологии в 1960 г. не заставили себя ждать. Все такие разработки без исключения представляли собой матрицу фоточувствительных элементов (как правило, фоторезисторов или фототранзисторов) и схемы сканирования по вертикали и горизонтали (регистры сдвига на биполярных, а позднее и полевых транзисторах). Число элементов разложения этих датчиков не превышало 256 на 256, а качество изображения с них было удручающим - как из-за низкой чувствительности, так и, в первую очередь, из-за числа дефектов, свойственных тогдашнему уровню технологии. Весьма раздражающей для глаза была и структурная неоднородность (выглядевшая как полосатость), связанная с неоднородностью выходных емкостей шин считывания разных столбцов (или строк - в зависимости от организации конкретного прибора).

Луч света забрезжил, как это часто бывает, с неожиданной стороны. В 1970 г. сотрудники фирмы Bell Laboratories У. Бойл и Дж. Смит в поисках электрического аналога схем на цилиндрических магнитных доменах предложили - и продемонстрировали экспериментально - принцип зарядовой связи. Самый первый ПЗС представлял собой аналоговый (!) регистр сдвига на 8 элементов, изготовленный по p-МОП технологии с молибденовыми затворами, а вскоре появились и двумерные матрицы. Очень быстро стало ясно, что присущее ПЗС свойство само сканирования (об этом чуть дальше) устраняет необходимость в регистрах сдвига, создававших столько проблем в предшествующих типах датчиков.

Дальнейший рывок в технологии и параметрах ПЗС был связан с появлением скрытого канала переноса (об этом тоже ниже) и применением прозрачных электродов из поликристаллического кремния, что резко повысило чувствительность приборов. Уже в середине 70-х появились первые коммерческие матрицы производства фирм Fairchild, Bell и RCA в США и Philips в Европе, совместимые с ТВ стандартом (т. е. имеющие разрешение по вертикали 476 или 576 строк - соответственно для американского или европейского стандартов разложения, и, по меньшей мере, 350 элементов разложения по горизонтали). Ну, а вскоре в Японии было налажено массовое производство недорогих ПЗС приемлемого качества для бытовой электроники - и на смену кинокамерам в массовом порядке пришли видеокамеры.

Революционное воздействие оказали ПЗС на астрономию, где их появление по степени влияния сравнимо разве что с тем, которое оказало применение в качестве средства регистрации фотопластинок вместо человеческого глаза (собственно, именно астрономия стала той первой отраслью человеческой деятельности, где фотоэмульсия уступила место кремнию). С другой стороны, и требования, предъявляемые астрономией, особенно космического базирования, к ПЗС, стимулировали развитие технологии их изготовления, и ныне приборы с числом элементов 4096 на 4096 и с квантовым выходом около 90% уже не являются экзотикой.

Ну и, наконец, микроскопия в медицине и биологии, компьютерное зрение и видеоконференции, системы ориентации космических аппаратов и считыватели штрих-кода, телефакс и сканер... - всё это тоже стало возможным и доступным благодаря ПЗС.



4.1 Устройство ПЗС-датчика

Для начала отметим, что ПЗС относятся к изделиям функциональной электроники, то есть их нельзя представить как совокупность транзисторов или же конденсаторов. Сам же принцип зарядовой связи весьма прост и основан на двух равно фундаментальных положениях: 1),одноимённые заряды отталкиваются, и 2),рыба ищет, где глубже. Для начала представим себе МОП-конденсатор (сокращение от слов металл-окисел - полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Первый ответ, который приходит на ум, - "ничего не будет, поскольку диэлектрик не проводит электричества" - не совсем верен, ибо электрическое поле через диэлектрик проникать может. И когда электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, если они каким-либо образом (например, в результате фото генерации) окажутся вблизи, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. как бы сваливаются в яму, которая совершенно официально называется потенциальной ямой (рис. 3а).

Рис. 3а Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и, в конце концов, могут полностью его скомпенсировать. Так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние (так что действительно "ничего не изменилось" - почти!) - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Рис. 3б Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в яму, в которой потенциальная яма глубже.

Пусть теперь рядом с затвором расположен ещё один, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 3б). Так вот, если только затворы расположены достаточно близко, их потенциальны ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если её потенциал выше (т. е. если она глубже), в полном соответствии с упомянутым выше фундаментальным принципом.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры.

Рис. 3в Простейший трёхфазный ПЗС-регистр. Заряд в каждой потенциальной яме разный!

Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3в). Это и есть простейший трёхфазный регистр сдвига на ПЗС.

Рис. 3г Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов.

Тактовые диаграммы работы такого регистра показаны на рис. 3г. Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и по

крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.

Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 3д). Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме (если она вообще образовалась).

Рис. 1д Вид на регистр "сверху". Канал переноса в боковом направлении ограничивается стоп каналами.

Понятно, что на полную передачу заряда из одной ямы в другую требуется время, так что при высокой тактовой частоте (а для ТВ стандарта она составляет в регистре считывания 7-13 МГц в зависимости от числа элементов по горизонтали) этого времени может и не хватить. Величина, показывающая, какая часть зарядового пакета передалась в следующий элемент ПЗС, называется эффективностью переноса е. Часто пользуются и связанной с ней величиной неэффективности h = 1-e. Однако частотные ограничения - это ещё полбеды. Беда же в том, что для структуры ПЗС, обсуждавшейся до сих пор, все события происходят в очень тонкой (десятки ангстрем) области у границы раздела окисел-кремний. Сколь бы не была совершенной кристаллическая структура подложки, граница раздела - нарушение однородности кристалла, а из физики твёрдого тела известно, что всякое нарушение однородности кристаллической решётки приводит к возникновению разрешённых энергетических уровней в запрещённой зоне. Ясно, что такое нарушение, как граница раздела, даром не проходит. И образующихся при этом энергетических уровней столько, что они образуют квазинепрерывный спектр, а значит, среди них есть такие, которые способны захватывать электроны из зоны проводимости (ловушки), причём время, через которое захваченный электрон вернётся обратно в зону проводимости, зависит от энергии ловушки (и абсолютной температуры). И получается, что, пока над данной точкой границы раздела нет заряда (а это когда-нибудь, да так), часть ловушек освобождается, эмитируя электрон обратно в зону проводимости, а когда придёт очередной зарядовый пакет - мгновенно заполняется, чтобы снова освободить захваченные электроны после того, как этот зарядовый пакет ушёл, так что освобождённые электроны попадают в другой, пришедший позднее, зарядовый пакет.

Более того, эмиссия электронов с ловушек обратно в зону проводимости, как всякий тепловой процесс, подвержена термодинамической флуктуации и привносит в распределение зарядов по ячейкам шум переноса. Кроме того, часть электронов, попавшая на глубокий уровень с длительным временем эмиссии, может вовсе не вернуться, а называется фиксированными потерями, и особенно заметно при переносе малых зарядовых пакетов. И, наконец, через квазинепрерывный спектр ловушек происходит интенсивная генерация темнового тока (тепловой процесс спонтанного образования электронно-дырочных пар - к сожалению, процесс неизбежный при температуре, отличной от абсолютного нуля, а наличие уровней в запрещённой зоне резко повышает его вероятность).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее