48762 (Реализация системы управления реального времени в ОС Windows)

2016-07-30СтудИзба

Описание файла

Документ из архива "Реализация системы управления реального времени в ОС Windows", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48762"

Текст из документа "48762"

Кафедра «Программное обеспечение ЭВМ и информационные технологии»

Курсовая работа

на Тему: «Реализация системы управления реального времени в ОС Windows »

Содержание

1. Введение

2. Конструкторская часть

2.1. Общие принципы

2.2. Програмное обеспечение

2.2.1. Драйвер режима ядра

2.2.2. Управляющее приложение

2.2.3. Приложение для создания нагрузки

2.2.4. Обратная связь

3. Технологическая часть

3.1. Выбор средства разработки

3.2. Организация задержек

3.3. Взаимодействие с драйвером

4. Исследовательская часть

4.1. Цели и задачи

4.2. Конфигурация тестового стенда

4.3. Работа на небольших частотах

4.4. Точность изменения задержек

4.5. Точность работы таймера

4.6. Увеличение частоты срабатывания

4.7. Работа параллельно с другими приложениями

4.7.1. Нагрузка на подсистему GDI

4.7.2. Работа со страничными отказами

5. Заключение

Приложение 1. Исходный код управляющего потока

Приложение 2. Исходный код рабочего потока

1. Введение

В настоящее время компьютеры прочно вошли в нашу жизнь. Сложно найти такой аспект повседневной жизнедеятельности, в которой еще не используется современная вычислительная техника. Не являются исключением и различные научно-исследовательские работы. Так, к нам в руки попало специальное устройство, предназначенное для аналого-цифрового и цифро-аналогого преобразования сигнала на аппаратном уровне. С устройством поставляется специальный драйвер для работы в операционной системе (далее ОС) Windows.

После первых же экспериментов с устройством выяснилось, что работа с ним возможна только на небольших частотах обрабатываемого сигнала. При увеличении частоты наблюдается искажение сигнала связанное с тем, что система не успевает обрабатывать приходящие данные и выдавать данные в ответ. Этот результат можно считать закономерным, учитывая что ОС Windows вообще говоря не является операционной системой реального времени. Однако, сама операционная система содержит в себе набор средств, которые предположительно могут позволить создать систему управления реального времени в ОС Windows.

2. Конструкторская часть

2.1 Общие принципы

Одним из возможных способов решения поставленной задачи может быть использование специальных потоков реального времени ОС Windows. Такие потоки имеют приоритеты от 16 до 31 и выполняются в режиме ядра. Кроме того, важным отличием таких потоков от обычных является то, что они являются потоками с добровольной передиспетчеризацией. Это означает, что если такой поток получает процессор (как системный ресурс), то он будет занимать его до тех пор, пока сам добровольно не вернет его системе, т.е. не перейдет в состояние блокировки (например в ожидание на функции WaitForSingleObject).

Именно этой особенность системных потоков реального времени мы и попробуем воспользоваться при реализации системы управления реального времени в ОС Windows.

2.2 Программное обеспечение

Для проведения исследований нам понадобится следующий набор программных средств: драйвер режима ядра, управляющее приложение, приложение для создания нагрузки, обратная связь.

Каждый из этих пунктов подробнее рассматривается далее в этом разделе.

2.2.1 Драйвер режима ядра

Для создания системных потоков нам необходимо использовать драйвер, которым в нашем случае является драйвер виртуального устройства. Связано это с тем, что в ходе наших исследований использование реального устройства было невозможно, кроме того, в этом не было острой необходимости. Работу реального устройства мы будем эмулировать при помощи еще одного системного потока внутри нашего драйвера.

Итак, при начальной инициализации (в функции DriverEntry) драйвер запускает два системных потока. Первый из них (эмулирующий реальное устройство, управляющий поток, см. Приложение 1) исполняется с приоритетом 31 и ждет на системном объекте «ожидающий таймер» (waitable timer). Это позволяет потоку пробуждаться через заранее определенные промежутки времени и будить второй поток, имитируя тем самым приход некоторых данных от внешнего устройства.

Второй поток (рабочий поток, см. Приложение 2) выполняется с настраиваемым приоритетом (от 16 до 30) и предназначен для обработки данных приходящих от внешнего устройства. Для этого он ждет на событии до тех пор пока оно не будет взведено управляющим потоком. Затем поток выполняет некоторое число холостых циклов на процессоре для имитации обработки данных. Количество таких циклов зависит от того, какую длительность задержки мы хотим использовать.

2.2.2 Управляющее приложение

При помощи специального приложения происходит управление работой драйвера. Внешний вид этого приложения показан на рис. 2.1.

Рис 2.1. Внешний вид управляющего приложения.

Верхняя кнопка позволяют установить драйвер. Следующие три поля ввода позволяют задать соответственно приоритет рабочего потока (от 2 до 30), частоту запросов от эмулируемого внешнего устройства (в герцах) и задержку (в 100-наносекундных интервалах), которая будет использована для имитации обработки полученных от устройства данных.

Нижняя кнопка позволяет применить сделанные изменения.

2.2.3 Приложение для создания нагрузки

Поскольку в реальных условиях параллельно с нашим драйвером будут выполняться и другие приложения, важно учесть это в ходе нашей исследовательской работы. Для этих целей было разработано специальное приложение, внешний вид которого показан на рис. 2.2.

Рис 2.2. Внешний вид приложения для создания нагрузки (фрагмент)

Первая пара кнопок позволяет включать или выключать нагрузку на подсистемы GDI, вторая пара кнопок соответственно влияет на генерацию множественных страничных отказов.

2.2.4 Обратная связь

Для определения текущего состояния драйвера необходимо поддерживать с ним обратную связь. Из всех возможных способов такой связи был выбран самый простой — посылка текстовых строк отладчику ядра функцией DbgPrint. Для чтения таких строк можно использовать специальные программные средства, в нашем случае будет использовано приложение DebugView 4.31 от Марка Руссиновича (Mark Russinovich), внешний вид которого показан на рис. 2.3.

Рис 2.3. Приложение DebugView

3. Технологическая часть

3.1 Выбор средства разработки

Для разработки драйверов наиболее широкое применение получили языки C/C++ и Ассемблер. Для разработки настоящего драйвера был выбран язык C++, поскольку он сочетает в себе простоту разработки программ с возможностью использования ассемблерных вставок для критических участков кода. Кроме того, заголовочные файлы для этого языка идут в стандартной поставке DDK. Для сборки конечного драйвера использовались компилятор и линковщик из DDK.

3.2 Организация задержек

Для имитации обработки данных, полученных от устройства необходимо создавать задержки. Для этого можно использовать вызов специальной функции ядра KeStallExecutionProcessor, однако в этом случае мы не можем контролировать что на самом деле произойдет с потоком и мы получим меньше информации о том сколько тактов центрального процессора было востребовано.

Кроме того, при реальной работе вместо фиктивных задержек будут использованы реальные математические вычисления на центральном процессоре. Наиболее удачной имитацией этого на наш взгляд будет создание холостых циклов при помощи ассемблерных вставок например такого вида:

mov ecx, count

label: xchg eax,eax

loop label

Здесь параметр count определяет, сколько именно холостых циклов нужно выполнить, причем мы даже можем приблизительно предположить, сколько тактов центрального процессора на это уйдет.

Для приблизительного пересчета числа холостых циклов во временные интервалы при начальной инициализации драйвера выполняется порядка 108 холостых циклов с вычислением времени которое было затрачено на эту операцию. Далее необходимое число холостых циклов для организации задержки рассчитывается по следующей формуле:

,

где count0 и time0 соответственно количество холостых циклов и время на их выполнение при начальной инициализации драйвера, time — требуемая длина задержки.

3.3 Взаимодействие с драйвером

Управление параметрами работы драйвером производится при помощи следующей структуры:

struct ControlStruct

{ int Priority;

int Frequency;

int Delay;};

Поле Priority задает текущий приоритет рабочего потока драйвера (приоритет управляющего потока всегда 31). Поле Frequency задает частоту прихода данных от эмулируемого внешнего устройства. Поле Delay определяет длительность задержек на обработку данных от устройства.

Передача обновленной структуры из управляющего приложения в драйвер осуществляется следующим образом. Приложение открывает виртуальное устройство, ассоциированное с драйвером, а замет вызовом WriteFile передает в драйвер нужные данные.

Драйвер получает данные в своей функции DispatchWrite и сохраняет их в глобальной переменной, внося необходимые изменения в свою работу.

4. Исследовательская часть

4.1 Цели и задачи

Для того чтобы начать исследование, необходимо определиться, как будет использоваться полученное программное обеспечение в ходе его проведения, и каких результатов мы хотим добиться.

При помощи управляющего потока мы будем имитировать работу реального устройства на некоторой частоте. Начав с небольших частот мы попытаемся довести частоту до 1 кГц и добиться устойчивой работы на ней.

Следует также определиться с тем, что мы будем понимать под устойчивой работой. Поскольку речь идет о системе управление реального времени, то необходимо, чтобы к моменту прихода следующего запроса от устройства предыдущий был уже полностью обработан. Если по приходу запроса мы обнаружим что предыдущий запрос еще обрабатывается, мы будем считать что на данной частоте с данным временем задержки на используемой системе реализация системы управления реального времени невозможна.

4.2 Конфигурация тестового стенда

Исследования проводились на компьютере со следующей конфигурацией: AMD Duron 1000 MHz, EPoX 8KHA+ (VIA KT266A), 384 Mb DDR SDRAM. Файлы подкачки системы располагались на винчестерах Seagate Barracuda и Western Digital со скоростью вращения шпинделя 7200 об/мин, подключенными по интерфейсу IDE.

Операционная система, установленная на тестовой машине, Microsoft Windows XP Pro SP2. Система недавно переустанавливалась, работает стабильно.

4.3 Работа на небольших частотах

Начнем наше исследование с запуска драйвера на небольших частотах, а именно ограничимся частотой в 1 Гц и пронаблюдаем какие максимальные задержки мы сможем выставить сохраним стабильную работу драйвера.

Для простоты пока будем предполагать что кроме нашего драйвера система больше не загружена никакими ресурсоемкими приложениями. То есть в диспетчере задач более 95% процессорного времени приходится на псевдо-процесс Idle («Бездействие системы»). Приоритет рабочего потока выставим в значение 16.

Частота 1 Гц дает нам приход запросов от имитируемого устройства каждые 1000 мс. Изначально была выставлена задержка 100 мс. Это дает системе 900 мс на «накладные расходы», что позволило драйверу стабильно выполнить необходимые действия. На прикладном уровне работа драйвера без привлечения специальных средств не ощущалась.

Затем мы стали увеличивать длительность задержки. Значение было доведено до 990 мс (что дает системе 10 мс на обработку «накладных расходов»). При такой задержке стабильная работа драйвера сохранилась, однако на прикладном уровне серьезно ощущались «рывки» — система тратила 99% времени на обработку в драйвере.

Возможно, длительность задержки можно было еще увеличить, однако это было сделать довольно трудно, т.к. система плохо реагировала на действия пользователя. При значении задержки 1000 мс, как и следовало ожидать, стабильность работы драйвера нарушалась.

Еще нужно сказать о том, что если для частоты 1 Гц затраты на накладные расходы системы длиной в 10 мс можно считать нормальными, то на более высоких частотах (выше 100 Гц) это будет недопустимо большой паузой.

4.4 Точность изменения задержек

Далее по ходу исследования нам будет необходимо увеличивать частоту запросов и уменьшать длительность задержек. Не лишним будет по логу работы драйвера убедится, что выбранный нами способ организации задержек работает корректно. На рис 4.1 показан один из участков лога.

Рис 4.1. Точность измерения задержек

Начало задержки 990 мс — время 398.11619158, конец — 399.10677251. Расхождение с расчетным временем составило 0.00058093 с. Конечно, при уменьшении задержек и при включении внешней нагрузки погрешность увеличится, однако такой результат все равно можно назвать достаточно хорошим.

4.5 Точность работы таймера

Вместо внешнего устройства мы использовали ожидающий таймер, поэтому интересно будет проверить, насколько точно он позволит нам выдерживать необходимую частоту срабатывания. На рис. 4.5 представлены два момента срабатывания таймера для частоты 1 Гц.

Рис. 4.5. Точность работы таймера

Как видно, разница составила 0.000195 с, что тоже можно считать хорошим результатом.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5121
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее