48755 (Реализация алгоритма обратной трассировки лучей для моделей с большим числом полигонов)

2016-07-30СтудИзба

Описание файла

Документ из архива "Реализация алгоритма обратной трассировки лучей для моделей с большим числом полигонов", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48755"

Текст из документа "48755"

Факультет информатики и систем управления

Кафедра "Программное обеспечение ЭВМ и информационные технологии"

Курсовой проект

по машинной графике

Расчетно-пояснительная записка

Тема:

"Реализация алгоритма обратной трассировки лучей для моделей с большим числом полигонов"

Москва 2004

Оглавление

1. Введение

2. Конструкторская часть

2.1 Обоснование использованных алгоритмов

2.2 Структура данных

2.2.1 Источники света

2.2.2 Объекты для визуализации

2.2.3 Текстуры

2.3 Алгоритм обратной трассировки лучей

2.3.1 Описание алгоритма

2.3.2 Математическая основа обратной трассировки лучей

2.3.3 Составление матрицы

2.3.4 Программная реализация

2.3.5 Определение пересечения луча с треугольником

2.3.4 Формирование отраженного луча

2.3.5 Формирование преломленного луча

2.4 Оболочки

2.4.1 Алгоритм построения иерархических оболочек

2.4.2 Алгоритм обхода оболочек в трассировке лучей

2.5 Текстурирование

2.5.1. Процедуры для работы с текстурами

2.5.2. Собственно текстурирование

2.6 Закраска Фонга

2.7 Освещение

2.7.1. Модель освещения Уиттеда

2.7.2 Диффузное отражение

2.7.3 Зеркальное отражение

2.7.4 Фоновая освещенность

2.7.5 Прозрачность

2.7.6 Процедуры расчета освещенности

3. Технологическая часть

3.1 Выбор языка программирования и обоснование выбора

3.2 Модульная структура программы

3.3 Интерфейс программы

4. Экспериментально-исследовательская часть

Тест № 1

Тест № 2

Тест № 3

Заключение

Список литературы


1. Введение

В компьютерной графике на сегодняшний день большое внимание уделяется алгоритмам получения реалистических изображений. Эти алгоритмы являются самыми затратными по времени. Обусловлено это тем, что они должны предусматривать множество физических явлений, таких как преломление, отражение, рассеивание света. Профессиональные программы для кинематографа учитывают еще больше явлений (дифракцию, интерференцию, зависимость коэффициентов преломления, отражения, поглощения от длины волны падающего света, вторичное, третичное отражение света).

В моей курсовой работе для рендеринга применяется алгоритм обратной трассировки. На сегодняшний день он считается одним из лучших для формирования реалистических изображений. Его используют большинство трехмерных графических редакторов. Применяется так же алгоритм z-буфера. Но эффекты отражения и преломления, там достигаются искусственными методами и считаются не совсем точно. Подобным методом пользуются в программах, где крайне важна скорость. Примером таких программ служат компьютерные игры. Почти все они построены на использовании алгоритма z-буфера.

Целью моей курсовой было так же сделать алгоритм обратной трассировки как можно более быстрым. Для этого я применил метод иерархических оболочек. Его применение позволяет сделать время рендеринга, пропорциональным логарифму от числа объектов, а не числу объектов. Добиться с помощью этого реального времени, конечно, не удастся, но делает время ожидания приемлемым, равным порядка 5-30 секунд для 30000 треугольников на сцене.

Модуль Engine программы, может быть использован отдельно, в других программах Delphi. С помощью всего нескольких функций пользователь сможет задать сцену любой сложности и произвести рендеринг сцены. Модуль содержит функции для:

управления камерой

управления источниками света

задания объектов на сцене.

поворота объектов

рендеринга сцены

вывода изображения в задаваемое окно

По использованию модуль Engine очень похож на модуль OpenGL.


2. Конструкторская часть

2.1 Обоснование использованных алгоритмов

Главным алгоритмом, используемым в программе для удаления невидимых граней, а так же моделирования эффектов преломления и отражения, является алгоритм обратной трассировки лучей. Этот алгоритм позволил мне добиться максимальной реалистичности изображения. Он позволяет смоделировать распространение света в пространстве, учитывая законы геометрической оптики. Алгоритм можно быстро модернизировать, добавив в него обработку новых световых явлений. Алгоритм позволяет строить качественные тени с учетом большого числа источников света. Другие алгоритмы не позволяют так просто и качественно строить тени.

Достоинством алгоритма является то, что он не требователен к памяти, в отличие от алгоритма z-буфера. А недостатком является то, что работает он сравнительно долго и не позволяет строить изображения в реальном времени.

Для ускорения алгоритма применен метод иерархических оболочек. Он позволяет сократить время работы алгоритма трассировки в десятки, а на некоторых сценах в сотни раз. Среди всех алгоритмов оптимизации данный оказался самым эффективным. Метод BSP деревьев не дал значительного ускорения, а метод порталов в случае произвольной геометрии сцены вообще не применим. Алгоритм дает наилучшие результаты в сценах, где треугольники имеют примерно одинаковые размеры, а так же в разреженных сценах (т.е. в сценах, где объекты расположены на расстоянии, гораздо большем их линейных размеров).

Для сглаживания изображения применен алгоритм закраски Фонга. Он является самым затратным по времени. Метод Гуро, например, быстрее Фонга примерно в 5 раз. Но время его выполнения от общего времени рендеринга не превышает 3 процентов. Зато он дает великолепные результаты. В частности, блики выглядят куда реалистичнее, чем если использовать метод Гуро.

2.2 Структура данных

Сцена представляется набором объектов двух типов: источников света и собственно объектов, которые необходимо визуализировать.

2.2.1 Источники света

Источники света не имеют никаких геометрических размеров, они являются точечными и не рисуются при рендеринге. Информация об источниках света хранится в массиве Svet. В i-ом элементе массива хранится информация об i-ом источнике света. Элемент массива представляет собой запись:

TLight=record

tip: integer;

lim: real;

Center: TPoint;

R,G,B: real;

DirX,DirY,DirZ: real;

end;

Поле tip содержит информацию о типе источника. Если оно равно 1, то источник светит во все стороны. Если оно равно 2, то источник светит внутри конуса, направляющая которого DirX, DirY, DirZ, а угол при вершине равен 2*Lim. Угол измеряется в радианах. Если тип источника - 3, то источник также светит в конусе, но по мере отклонения от образующей его интенсивность уменьшается и на угле Lim равна нулю.

Поле Center содержит координаты источника в глобальной системе координат.

Поля R,G,B содержат интенсивность источника по красной, зеленой и синей компоненте. Они могут принимать значения от 0 до 1.

Если источник первого типа, то нет необходимости вводить поля DirX, DirY, DirZ и Lim, так как они не требуются для расчета интенсивности.

2.2.2 Объекты для визуализации

Объекты для визуализации, задаются в виде полигональной модели. Каждый объект представляет собой набор полигонов. В моей курсовой в качестве полигонов выбраны треугольники, так как при этом значительно упрощается текстурирование, сглаживание и процедура пересечения луча с треугольником. Сцена представляет собой набор объектов. Объекты состоят из треугольников. Информация об одном объекте хранится в трех массивах:

Objects (массив объектов), Vse (массив треугольников), Toch (массив точек).

Массив Objects

Элемент массива представляет собой запись:

TObj=record

StartT,EndT: integer;

StartG,EndG: integer;

XC,YC,ZC,R: real;

nnn,NPr: real;

end;

StartT, EndT соответствуют индексам в массиве точек. Они указывают, что точки с номером, большим или равным StartT и меньшим или равным EndT, принадлежат данному объекту.

StartG, EndG соответствуют индексам в массиве треугольников. Они указывают, что треугольники с номером, большим или равным StartG и меньшим или равным EndG, принадлежат данному объекту.

В NPr содержится показатель преломления данного объекта.

В nnn содержится коэффициент затухания света в данном объекте.

Массив Toch

Элемент массива представляет собой запись:

TApex=record

X,Y,Z: real;

nx,ny,nz: real;

end;

Поля X,Y,Z содержат координаты точки.

Поля nx, ny, nz содержат значение нормали в данной точке. Эти поля используются при закраске по методу Фонга.

Массив Vse

Массив содержит полную информацию обо всех треугольниках сцены.

Элемент массива представляет собой запись:

TGran=record

Nom: array [1. .3] of integer;

ColorR,ColorG,ColorB: Byte;

KOt,KPr,KRas,KDif,KBlik: real;

Tek: array [1. .3] of array [1. .2] of integer;

TNom: integer;

PaintType: boolean;

XC,YC,ZC,R: real;

O: integer;

p: real;

end;

Массив Nom содержит номера точек, которые являются вершинами треугольника.

ColorR, ColorG, ColorB содержат цвет треугольника.

Поля KOt, KPr, KRas, KDif, KBlik, содержат оптические коэффициенты поверхности треугольника.

O - номер объекта, которому принадлежит данный треугольник.

XC, YC, ZC, R - координаты центра и радиус сферической оболочки треугольника.

PaintType - способ закраски треугольника.

TNom - номер текстуры, которая наложена на треугольник.

Массив Tek содержит текстурные координаты, каждой вершины треугольника.

Запись треугольника не содержит координат вершин, она содержит ссылки на вершины. Таким образом, сразу несколько треугольников, могут ссылаться на одну и ту же вершину.

Это дает большую экономию памяти, так как общую для всех треугольников вершину нужно описать всего один раз.

Это упрощает изменение координат вершины. Если бы координаты вершин хранились непосредственно в записи треугольника, то пришлось бы изменить все записи треугольников, включающие данную вершину. В данном случае надо изменить координаты только одной точки.

Очень удобно поворачивать, объекты. Если необходимо повернуть заданный объект, достаточно пробежать по всем его точкам и изменить их координаты.

Настройки цвета, коэффициентов и сглаживания у каждого треугольника свои, а не одинаковые у всех треугольников объекта. Это дает большую свободу в формировании сцены.

Коэффициенты затухания и преломления задаются в записи объекта, так как они характеризуют весь объект целиком.

Данная организация не обладает избыточностью, все треугольники и вершины описываются ровно один раз.

К недостаткам можно отнести то, что получение координат вершин треугольника по ссылке занимает больше времени, чем если бы мы читали их непосредственно из записи треугольника.

Иерархические оболочки

Для хранения иерархических оболочек используется массив Shapes. Он состоит из записей:

TShape=record

tip: integer;

S: integer;

G: TSpisok;

S1: integer;

G1: TSpisok;

Low: array [1. .8] of integer;

NLow: integer;

XC,YC,ZC,R: real;

end;

Первый элемент в массиве Shapes соответствует оболочке, включающей все треугольники сцены.

Поле tip принимает два значения: 1 и 2. Если у оболочки нет подоболочек, то tip равен 2, в противном случае равен 1.

G - это указатель на список треугольников, принадлежащих данной оболочке, S - их число.

G1 - это указатель на список треугольников, которые принадлежат оболочке и очень большие, S1 - их число.

Low - массив содержащий номера подоболочек в массиве Shapes, Nlow - число этих подоболочек.

XC, YC, ZC - координаты центра этой оболочки.

R - радиус оболочки.

Таким образом, в памяти разворачивается дерево. Из корня (т.е. из первой оболочки) его легко обойти. Проще всего это можно сделать, пользуясь рекурсивным алгоритмом.

2.2.3 Текстуры

Информация о текстурах хранится в массиве Tex. Для каждой текстуры хранятся ее размеры (lx, ly) и указатель на область памяти, куда загружена текстура (PT).

TTex=record

lx,ly: integer;

PT: PRGBI;

end

2.3 Алгоритм обратной трассировки лучей

2.3.1 Описание алгоритма

Методы трассировки лучей на сегодняшний день считаются наиболее мощными методами создания реалистических изображений. Универсальность методов трассировки в значительной степени обусловлена тем, что в их основе лежат простые и ясные понятия, отражающие наш опыт восприятия окружающего мира.

Рассмотрим, как формируется изображение. Изображение получается из-за того, что свет попадает в камеру. Выпустим из источников света множество лучей. Назовем их первичными лучами. Часть этих лучей улетит в свободное пространство, а часть попадет на объекты. На них лучи могут преломиться, отразится. При этом часть энергии луча поглотится. Преломленные и отраженные лучи образуют множество вторичных лучей. Далее эти лучи опять же преломятся и отразятся и образуют новое поколение лучей. В конечном итоге часть лучей попадет в камеру и сформирует изображение.

Существуют алгоритмы, работающие по такому алгоритму. Но они крайне неэффективны, так как большинство лучей, исходящих из источника, не попадают в камеру. А приемлемая картинка получается, если трассировать большое число лучей, что займет очень много времени. Данный алгоритм называется прямой трассировкой лучей.

Метод обратной трассировки лучей позволяет значительно сократить перебор световых лучей. Этот метод разработали в 80-х годах Уиттед и Кэй. В этом методе отслеживаются лучи не от источников, а из камеры. Таким образом, трассируется определенное число лучей, равное разрешению картинки.

Предположим, что у нас есть камера и экран, находящийся на расстоянии h от нее. Разобьем экран на квадратики. Дальше будем по очереди проводить лучи из камеры в центр каждого квадратика (первичные лучи). Найдем пересечение каждого такого луча с объектами сцены и выберем среди всех пересечений самое близкое к камере. Далее, применив нужную модель освещения, можно получить изображение сцены. Это самый простой метод трассировки лучей. Он позволяет лишь отсечь невидимые грани.

Но можно пойти дальше. Если мы хотим смоделировать такие явления, как отражение, преломление, нам необходимо из самого близкого пересечения пустить вторичные лучи. Например, если поверхность отражает свет и она идеально ровная, то необходимо отразить первичный луч от поверхности и пустить по этому направлению вторичный луч. Если же поверхность неровная, то необходимо пустить множество вторичных лучей. В программе это не делается, так как это сильно замедлит трассировку.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее