48332 (Проектирование аппаратуры передачи данных), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Проектирование аппаратуры передачи данных", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48332"

Текст 3 страницы из документа "48332"

Функциональная схема одного из вариантов ЧМ – демодулятора приведена на рисунке 3.4.2. В её состав входит усилитель-ограничитель (УО) с нулевым порогом ограничения, формирователь коротких импульсов в моменты переходов входного сигнала через нуль (ФКИ), одновибратор (ОВ), фильтр низких частот (ФНЧ) и пороговое устройство (ПУ). Временная диаграмма, иллюстрирующая работу ЧМ- демодулятора, показана на рис. 3.4.3. Импульс фиксированной длительности формируется ОВ в момент пресечения входным сигналом нулевого уровня. Длительность импульса должна быть меньше длительности периода верхней частоты демодулируемого сигнала. Из прямоугольной последовательности импульсов ОВ ФНЧ выделяет постоянную составляющую, которая преобразуется ПУ в посылки постоянного тока.

Рисунок 3.4.2 – Схема ЧМ–демодулятора


Рисунок 3.4.3 – Временные диаграммы ЧМ–демодулятора

Для формирования коротких импульсов целесообразно использовать схему цифрового дифференциального выпрямителя (см. рис 3.4.4). В качестве ОВ можно применить схему ждущего мультивибратора, выполненного на логических элементах или на основе счетчика импульсов с предварительной установкой. Принцип действия ОВ на основе счетчика заключается в том, что импульсом нулевого пересечения в счетчик заносится число, в результате чего на его выходе появится положительный потенциал, длительность которого определяется выбором заносимого в счетчик числа, емкостью счетчика и частотой следования тактовых импульсов. Схема ОВ на основе счетчика будет более громоздкой, но стабильность параметров импульса значительно выше.

Рисунок 3.4.4 - Схема цифрового дифференциального выпрямителя

Параметры ОВ выбираются таким образом, чтобы при поступлении на вход демодулятора сигнала с частотой

fср = (fнч + fвч)/2 (3.4.1)

напряжение на его выходе имело симметричную форму (меандр), здесь fнч и fвч – нижняя и верхняя частоты демодулируемого сигнал. Длительность импульса ОВ равна

tов = 1/ (2 fср) (3.4.2)

Как видно из временной диаграммы, абсолютная величина краевых искажений сигналов Θ на выходе демодулятора составляет примерно 1.5tов. Задавая допустимую относительную величину краевых искажений δдоп, можно определить требования к средней частоте ЧМ – сигнала. Так как

δдоп ≤ 1.5tов / τ0 = 1.5В/(2 fср) (3.4.3)

то

fср ≥ 0.75В/ δдоп (3.4.4)

Для уменьшения вносимых демодулятором искажений нужно увеличить среднюю частоту ЧМ – сигнала, поэтому такой демодулятор следует включать совместно с преобразователем частоты. В процессе расчета параметров ЧМ – демодулятора необходимо рассчитать частоту преобразователя fпч, длительность импульса одновибратора и параметры ФНЧ.

Рассчитаем параметры ЧМ – демодулятора для прямого канала, если fнч = 1030 Гц, fвч = 1970 Гц, скорость модуляции В=600 бод. Допустимая величина краевых искажений δдоп = 5%

Из (3.4.4) найдём требуемую среднюю частоту ЧМ – сигнала, поступающего на вход демодулятора:

fср ≥ 0.75*600/ 0.05 = 9000Гц

Частота модуляции промежуточного преобразователя частоты определяется из соотношения

fпч = fдоп ± (fнч + fвч)/2 = 15±1.5 кГц (3.4.5)

Плюс берется в случае выделения в преобразователе нижней боковой составляющей, а минус – верхней. Принимаем fпч = 10.5 кГц. Длительность импульса одновибратора находим из (4.6) с учетом того, что fср = fср, тогда

tов = 1/ (2 *9000) = 5.6*10-5 с.

Параметры ЧМ – демодулятора для обратного канала, если fнч = 360 Гц, fвч = 420 Гц, скорость модуляции В=75 бод. Допустимая величина краевых искажений δдоп = 5%

Из (3.4.4) найдём требуемую среднюю частоту ЧМ – сигнала, поступающего на вход демодулятора:

fср ≥ 0.75*75/ 0.05 = 1125Гц.

Частота модуляции промежуточного преобразователя частоты определяется из соотношения

fпч = fдоп ± (fнч + fвч)/2 = 1125±390 кГц.

Плюс берется в случае выделения в преобразователе нижней боковой составляющей, а минус – верхней. Принимаем fпч = 1515 кГц. Длительность импульса одновибратора находим из (4.6) с учетом того, что fср = fср, тогда

tов = 1/ (2 *1125) = 4.4*10-4 с.

Для правильной фиксации единичных элементов при наличии краевых искажений или дроблений будем использовать регистрирующее устройство (УР) на основе принципа стробирования.

Метод стробирования заключается в том, что значение единичного элемента проверяется в момент времени, наименее подверженный искажениям, то есть в середине посылки, путем подачи стробирующего импульса (строба) на ключевые элементы. В качестве стробов используется последовательность коротких импульсов с периодом следования τ0, вырабатываемая специальной схемой синхронизации. При использовании в качестве регистратора синхронного D - триггера схема регистрации имеет вид, изображенный на рисунке 3.4.5. Временная диаграмма функционирования устройства регистрации со стробированием показана на рисунке 3.4.6.

Рисунок 3.4.5 – Схема регистрации единичных элементов стробированием

Рисунок 3.4.6 – Временные диаграммы регистрации стробированием

4 Разработка Устройства защиты от ошибок

4.1 Выбор способа защиты от ошибок

Основным способом повышения верности передачи дискретных сообщений является введение в передаваемую последовательность избыточности с целью обнаружения и исправления ошибок в принятой информации. Все устройства защиты от ошибок (УЗО) делятся на две группы: симплексные (без обратной связи) и дуплексные (с обратной связью).

В симплексных УЗО повышение верности передачи может быть достигнуто тремя способами: путем многократного повторения символов; одновременной передачей одной и той же информации по нескольким каналам; применением кодов исправляющих ошибки.

К дуплексной группе УЗО относятся устройства, в которых повышение верности передаваемой информации достигается за счет введения обратной связи. Они в свою очередь делятся на системы с решающей (РОС), информационной (ИОС) и комбинированной (КОС) обратной связью. Сущность повышения верности в этих системах состоит в том, что при обнаружении искажений в передаваемом сообщении происходит запрос блока, в котором находятся один или несколько неправильно принятых знака. В системах с РОС передаваемые данные кодируются избыточными кодами, позволяющими обнаруживать одиночные ошибки или пачки (группы) ошибок. Решение о необходимости повторения блока информации, в котором обнаружена ошибка, принимается приемником на основании анализа поступившей последовательности. В случае обнаружения в принятом блоке ошибок он стирается и по каналу обратной связи (ОС) приемная станция посылает сигнал «Запрос», на основании которого передатчик повторно выдает этот же блок. При безошибочном приеме блока данные поступают потребителю, а по каналу ОС передается сигнал «Подтверждение».

В УЗО с ИОС нет необходимости вводить избыточность в передаваемые данные. Двоичная последовательность, зафиксированная приемником, запоминается и затем по каналу ОС передается вся или в виде укороченной кодовой комбинации, содержащей определенные признаки всей последовательности, на передающую сторону. Полученная по каналу ОС информация анализируется предыдущей станцией, которая по результатам анализа принимает решение о передаче следующего блока либо о повторении ошибочно принятого. Это решение сообщается на приемную сторону и на его основании полученная информация передается потребителю или стирается.

УЗО с КОС представляют собой сочетание информационной и решающей ОС. В них решение о необходимости повторной передачи может приниматься как на передающей, так и на приемной сторонах , а по каналу обратной связи могут передаваться информационные элементы или сигналы «Запрос» или «Подтверждение».

Одной из главных задач проектирования УЗО является выбор способа защиты от ошибок, который при минимальных затратах обеспечит выполнение поставленных требований. Под затратами подразумевается не только стоимость аппаратуры, но и необходимые полоса частот (требуемое число каналов связи), время на передачу сообщения, а также стоимость обслуживания устройства в процессе эксплуатации.

При наличии дуплексных каналов связи в большинстве случаев целесообразно использовать УЗО с ОС. Устройства с информационной обратной связью позволяют обнаруживать ошибки практически любой кратности, но к каналу обратной связи предъявляют такие же требования, как и к прямому. Поэтому УЗО с ИОС наиболее эффективно могут быть использованы при скоростях менее 600 бит/с. Если же передача данных ведется на скоростях 600 и более бит/с, то эффективность использования канала связи с УЗО с ИОС снижается и в этом случае для повышения помехоустойчивости передачи символов следует применять УЗО с РОС либо с КОС.

Для данного курсового проекта при анализе технических параметров было выбрано УЗО с РОС.

Передача сообщений от отправителя к получателю обычно осуществляется поблочно, длина которого определяется информационной частью, и числом служебных и проверочных символов.

Обмен данными будет проходить следующим образом:

- сначала ООД загружает в АПД весь массив данных, которые будут храниться в оперативной памяти передающего узла;

- передающая сторона берет очередной блок данных, вычисляет проверочные символы для данного блока, дополняет его ими, и в начало блока дописывает синхронизирующую комбинацию длиной 8 бит, имеющую формат 01010101, для того, чтобы приемная сторона могла засинхронизировать свои функциональные блоки. Проверочная комбинация имеет длину 16 бит. Текущий блок хранится в памяти до получения от приемника сигнала о правильности приема.

- на приемной стороне, полученный блок декодируется, проверяется на наличие ошибок, и результат проверки отправляется на передающую сторону виде подтверждения приёма, либо запроса на повторную передачу блока.

- приемная сторона, получив подтверждение правильного приема, осуществляет обработку следующего блока, в случае же запроса на повтор передачи в канал повторно отправляется текущий блок.

- процесс повторяется, пока не будут переданы все информационные блоки.

4.2 Разработка формата сообщения

В процессе разработки СПД необходимо УЗО спроектировать так, чтобы обеспечить требуемую помехоустойчивость при максимально эффективной скорости передачи данных. Помехоустойчивость и эффективная скорость передачи данных зависят от избыточности передаваемых сообщений, причем с увеличением избыточности помехоустойчивость возрастает, а эффективная скорость падает.

По техническим данным при выбранном УПС избыточность передаваемого сообщения может быть велика, а с ее увеличением, как уже говорилось, помехоустойчивость повышается. В таком случае наличие в канале связи пакета ошибок приводит к снижению эффективной скорости передачи. Допустим, что пакеты ошибок являются независимыми событиями, каждый пакет вызывает повторную передачу только одного блока сообщения и интервал между пакетами ошибок в среднем превышает длину блока. В таком случае в качестве формулы для расчета эффективной скорости СПД с решающей обратной связью можно взять

(4.2.1)

заменив в ней соответственно вероятность ошибочного приема элемента Р0 на вероятность появления пачки ошибок РПО = 810-5.

Для повышения эффективности передачи данных метод кодирования выбирается таким образом, чтобы заданная помехоустойчивость обеспечивалась при минимальном числе проверочных элементов r, то же относится и к служебным знакам. Величина r зависит от используемого кода, который выбирается исходя из требуемой вероятности ошибочного приема кодовой комбинации Ркк и характера ошибок в дискретном канале.

Оптимальная величина блока информации может быть найдена путем построения зависимости Vэф=Ψ(nб). Приемлемой эффективной скоростью считается:

Vэф= (0,90 0,95) V бит/с. (4.2.2)

Vэф_min=V [1 - Po nб / (1 - Po nб)] [1- (r + nсл) / nб] (4.2.3)

где Ро – вероятность ошибочного приема;

nб – длина блока;

r – число проверочных бит;

nсл – число служебных бит, используемых для введения признака начала блока.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее