47798 (Общие принципы, характерные для нейросетей)

2016-07-30СтудИзба

Описание файла

Документ из архива "Общие принципы, характерные для нейросетей", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47798"

Текст из документа "47798"

Московский Автомобильно-Дорожный Институт

(Государственный Технический Университет)

Кафедра АСУ

Курсовая работа

по дисциплине: «Интеллектуальные системы»

Тема работы: «Общие принципы, характерные для нейросетей»

Москва 2000

Содержание


Введение

Наиболее интересные нейросетевые архитектуры и их приложения

Общие принципы, характерные для нейросетей

Локальность и параллелизм вычислений

Программирование: обучение, основанное на данных

Универсальность обучающих алгоритмов

Сферы применения нейросетей

Вывод

Список литературы



Введение

Традиционно нейрон описывался в терминах, заимствованных из нейрофизиологии. Согласно этим представлениям нейрон имеет один выход sj и несколько входов (синапсов), на которые поступают внешние воздействия хi (от рецепторов и от других нейронов).

Количество нейронов в мозге оценивается величиной 1010-1011. Типичные нейроны имеют тело клетки (сому), множество ветвящихся коротких отростков - дендритов и единственный длинный и тонкий отросток - аксон. На конце аксон также разветвляется и образует контакты с дендритами других нейронов - синапсы.

Рисунок 1. Схема межнейронного взаимодействия

Искусственные нейронные сети получили широкое распространение за последние 20 лет и позволили решать сложные задачи обработки данных, часто значительно превосходя точность других методов статистики и искусственного интеллекта, либо являясь единственно возможным методом решения отдельных задач. Нейросеть воспроизводит структуру и свойства нервной системы живых организмов: нейронная сеть состоит из большого числа простых вычислительных элементов (нейронов) и обладает более сложным поведением по сравнению с возможностями каждого отдельного нейрона. Нейросеть получает на входе набор входных сигналов и выдает соответствующий им ответ (выходные сигналы), являющийся решением задачи.

Искусственные нейронные сети применяются для задач классификации или кластеризации многомерных данных. Основная идея лежащая в основе нейронных сетей – это последовательное преобразование сигнала. Основой нейронной сети является кибернетический нейрон. Кибернетический нейрон состоит из 3 логических блоков: входы, функция преобразования и выход. На каждую комбинацию конкретных значений входов функция преобразования нейрона вырабатывает определённый сигнал (выход) (обычно скаляр), и передает его на входы другим нейронам сети. Подавая на входы некоторым нейронам сигналы извне, и отметив выходы части нейронов, как выходы сети в целом, мы получим систему, осуществляющую отображение.

Нейронные сети различаются функцией преобразования в нейронах, внутренней архитектурой связей между нейронами и методами настройки (обучения).

Основным плюсом нейросетей является возможность решения широкого класса задач алгоритмически не разрешимых или задач с нечёткими условиями. Доступность и возросшие вычислительные возможности современных компьютеров привели к широкому распространению программ, использующих принципы нейросетевой обработки данных, но исполняемых на последовательных компьютерах.



Наиболее интересные нейросетевые архитектуры и их приложения

Модель Хопфильда с ассоциативной памятью.

Многослойный персептрон, решающий обширный класс задач распознавания образов.

•Самоорганизующиеся карты Кохенена, обладающие возможностью самостоятельно выявлять закономерности в данных а разбивать входные данные на кластеры.

•Рекурсивные сети Элмана, способные обрабатывать последовательности векторов.

•Вероятностные сети, аппроксимирующие Байесовские классификаторы с любой степенью точности.


Общие принципы, характерные для нейросетей

Согласно общепринятым представлениям наиболее общими принципами, характерными для современных нейросетей являются: коннекционизм, нелинейность активационной функции, локальность и параллелизм вычислений, обучение вместо программирования, оптимальность обучающих алгоритмов.

  1. Коннекционизм – это особое течение в философской науке, предметом которого являются вопросы познания. В рамках этого течения предпринимаются попытки объяснить интеллектуальные способности человека, используя искусственные нейронные сети. Составленные из большого числа структурных единиц, аналогичных нейронам, с заданным для каждого элемента весом, определяющим силу связи с другими элементами, нейронные сети представляют собой упрощённые модели человеческого мозга. Такая весовая модель обладает эффектом синапсов, соединяющих каждый нейрон с остальными. Эксперименты с нейронными сетями подобного рода продемонстрировали их способность к обучению выполнения таких задач, как распознавание образов, чтение и определение простых грамматических структур. Философы начали проявлять интерес к коннекционизму, так как коннекционистский подход обещал обеспечить альтернативу классической теории разума и широко распространённой в рамках этой теории идеи, согласно которой механизмы работы разума имеют сходство с обработкой символического языка цифровым компьютером. То, как именно и в какой степени парадигма коннекционизма составляет альтернативу классическим представлениям о природе разума, является предметом жарких споров, ведущихся в последние годы.

Принцип коннекционизма означает, что каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных. Заметим, что наиболее последовательно этот принцип реализован в архитектуре многослойного персептрона.

Рисунок 2. Выделение областей сложной формы.

Отличительной чертой нейросетей является глобальность связей. Базовые элементы искусственных нейросетей - формальные нейроны - изначально нацелены на работу с широкополосной информацией. Каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных (см. Рисунок 1, иллюстрирующий наиболее широко распространенную в современных приложениях архитектуру многослойного персептрона). В этом основное отличие формальных нейронов от базовых элементов последовательных ЭВМ - логических вентилей, имеющих лишь два входа. В итоге, универсальные процессоры имеют сложную архитектуру, основанную на иерархии модулей, каждый из которых выполняет строго определенную функцию. Напротив, архитектура нейросетей проста и универсальна. Специализация связей возникает на этапе их обучения под влиянием конкретных данных.

Рисунок 3. Глобальность связей в искуственных нейросетях

Типичный формальный нейрон производит простейшую операцию - взвешивает значения своих входов со своими же локально хранимыми весами и производит над их суммой нелинейное преобразование:

Рисунок 4. Нейрон производит нелинейную операцию над линейной комбинацией входов

Нелинейность выходной функции активации принципиальна. Чтобы отразить суть биологических нейронных систем, определение искусственного нейрона дается следующим образом:

Он получает входные сигналы (исходные данные либо выходные сигналы других нейронов нейронной сети) через несколько входных каналов. Каждый входной сигнал проходит через соединение, имеющее определенную интенсивность (или вес); этот вес соответствует синаптической активности биологического нейрона. С каждым нейроном связано определенное пороговое значение. Вычисляется взвешенная сумма входов, из нее вычитается пороговое значение и в результате получается величина активации нейрона (она также называется пост-синаптическим потенциалом нейрона - PSP).

Сигнал активации преобразуется с помощью функции активации (или передаточной функции) и в результате получается выходной сигнал нейрона.

Нелинейность разрушает линейную суперпозицию и приводит к значительному расширению возможностей нейросетей.


Локальность и параллелизм вычислений

Массовый параллелизм нейро - вычислений, необходимый для эффективной обработки образов, обеспечивается локальностью обработки информации в нейросетях. Каждый нейрон реагирует лишь на локальную информацию, поступающую к нему в данный момент от связанных с ним таких же нейронов, без апелляции к общему плану вычислений, обычной для универсальных ЭВМ. Таким образом, нейросетевые алгоритмы локальны, и нейроны способны функционировать параллельно.


Программирование: обучение, основанное на данных

Искусственная нейросеть, как и естественная биологическая, может обучаться решению задач: она содержит внутренние адаптивные параметры нейронов и своей структуры, и меняя их, может менять свое поведение. Место программирования занимает обучение, тренировка нейронной сети: для решения задачи не нужно программировать алгоритм - нужно взять универсальный нейросетевой инструмент, создать и обучить нейросеть. Нейронная сеть обучается решению задачи на некотором "учебнике" − наборе ситуаций, каждая из которых описывает значения входных сигналов нейросети и требуемый для этих входных сигналах ответ. "Учебник" задает набор эталонных ситуаций с известными решениями, а нейронная сеть при обучении сама находит зависимости между входными сигналами и ответами. Обученная нейросеть может обобщать (интерполировать и экстраполировать) полученный навык решения и выдавать прогноз для новых значений входных сигналов, ранее не включенных в "учебник". Нейронная сеть способна обучаться решению задач, для которых у человека не существует формализованных, быстрых или работающих с приемлемой точностью алгоритмов решения. Структура нейросети может быть адаптирована к задаче: в нейросеть могут быть включены дополнительные нейроны, если исходная нейросеть не способна обеспечить решение задачи с нужной точностью. Из нейросети могут быть исключены лишние нейроны и связи между ними, если исходная нейросеть избыточна для решения задачи. Нейросеть может сама выделить наиболее информативные для задачи входные сигналы, отбросить неинформативные, шумовые сигналы и в итоге повысить надежность решения. При этом нейронная сеть не делает предварительного полного забывания ранее сформированных навыков, ускоряя таким образом свое дообучение после коррекции размеров.

Отсутствие глобального плана вычислений в нейросетях предполагает и особый характер их программирования. Оно также носит локальный характер: каждый нейрон изменяет свои “подгоночные параметры” - синаптические веса - в соответствии с поступающей к нему локальной информацией об эффективности работы всей сети как целого. Режим распространения такой информации по сети и соответствующей ей адаптации нейронов носит характер обучения. Такой способ программирования позволяет эффективно учесть специфику требуемого от сети способа обработки данных, ибо алгоритм не задается заранее, а порождается самими данными - примерами, на которых сеть обучается. Именно таким образом в процессе самообучения биологические нейросети выработали столь эффективные алгоритмы обработки сенсорной информации. Характерной особенностью нейросетей является их способность к обобщению, позволяющая обучать сеть на ничтожной доле всех возможных ситуаций, с которыми ей, может быть, придется столкнуться в процессе функционирования. В этом их разительное отличие от обычных ЭВМ, программа которых должна заранее предусматривать их поведение во всех возможных ситуациях. Эта же их способность позволяет кардинально удешевить процесс разработки приложений.


Универсальность обучающих алгоритмов

Привлекательной чертой нейрокомпьютинга является единый принцип обучения нейросетей - минимизация эмпирической ошибки. Функция ошибки, оценивающая данную конфигурацию сети, задается извне - в зависимости от того, какую цель преследует обучение. Но далее сеть начинает постепенно модифицировать свою конфигурацию - состояние всех своих синаптических весов - таким образом, чтобы минимизировать эту ошибку. В итоге, в процессе обучения сеть все лучше справляется с возложенной на нее задачей.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее