158 (Корреляционный анализ солнечной и геомагнитной активностей)

2016-07-30СтудИзба

Описание файла

Документ из архива "Корреляционный анализ солнечной и геомагнитной активностей", который расположен в категории "". Всё это находится в предмете "авиация и космонавтика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "авиация и космонавтика" в общих файлах.

Онлайн просмотр документа "158"

Текст из документа "158"

ГЛАВНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ И НАУКИ

ХАРЬКОВСКОЙ ОБЛАСТНОЙ

ГОСУДАРСТВЕННОЙ АДМИНИСТРАЦИИ

ХАРЬКОВСКОЕ ТЕРРИТОРИАЛЬНОЕ ОТДЕЛЕНИЕ

МАЛОЙ АКАДЕМИИ НАУК

ФИЗИКО-МАТЕМАТИЧЕСКОЕ ОТДЕЛЕНИЕ

СЕКЦИЯ АСТРОНОМИИ

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ СОЛНЕЧНОЙ

И ГЕОМАГНИТНОЙ АКТИВНОСТИ

Выполнила:

Пирогова Ульяна Владимировна,

ученица 11 класса ХНУ лицея

Дзержинського района г. Харкова

Научный руководитель:

Грецкий Андрей Михайлович,

кандидат физико-математичских наук,

доцент Харьковского Национального

Университета им. В.Н. Каразина

г. Харьков – 2009

Содержание

Введение

1. Солнечная активность.

1.1 Количественное измерение солнечной активности.

1.2 Классификация групп пятен.

1.3 Астрометрическое наблюдение Солнца относительно Земли.

2. Межпланетная секторная структура

3. Магнитное поле Земли.

3.1 Магнитосферные бури и суббури.

3.2 Единицы напряжённости магнитного поля

3.3 Составляющие магнитного поля

4. Индексы, характеризующие геомагнитные вариации.

5. Постановка задачи.

6. Реализация задачи.

Выводы

Литература

Приложения

Введение

Германский любитель астрономии Генрих Швабе, наблюдавший за солнечным диском с 1826г. по1843г. в поисках новой планеты, заметил 11-летний цикл изменения количества пятен на Солнце. Однако ранее, Питер Горребов (Дания г.Копенгаген), интервал наблюдений которого 1761-1769г., утверждал о периодичности солнечных пятен, связывая их появления с мощными полярными сияниями. В середине 19 в. Иоганн фон Ламон обнаружил увеличение числа магнитных бурь с таким же периодом, а в конце этого же века В.О. Биркелан предположил, что кроме электромагнитного излучения Солнце испускает частицы. Эти и последующие открытия положили начало изучению солнечно-земных связей- разделу науки на стыке геофизики и физики Солнца.[1]

Проявлением солнечно-земных связей является следующая последовательность событий: с возникновения солнечной вспышки в солнечном ветре (СВ) генерируется ударная волна, несколько опережающая плазменное облако; по достижению Земли ударная волна порождает магнитную бурю, а облако плазмы — суббури. Развитие и затухание центра активности также вызывают магнитосферные возмущения. Это обусловлено тем, что подобные процессы приводят к перераспределению магнитных полей и потоков солнечной плазмы, исходящих в межпланетное пространство. Поскольку в различных частях солнечного диска развивается и затухает несколько центров активности , магнитосфера погружена в непрерывно изменяющуюся межпланетную секторную структуру (МСС).В каждой секторной структуре происходит систематическое изменение плотности СВ, его скорости и напряжённости магнитного поля. Неоднородность перечисленных характеристик связана с нестабильной солнечной активностью. Для более глубокого исследования солнечно-земных связей вводятся численные оценки меры солнечных воздействий и земных откликов на них, т.е. специальные индексы.

  1. Солнечная активность

Причиной нестабильности активности Солнца является его дифференциальное вращение, которое «вытягивает» погружённые силовые линии магнитного поля Солнца и усиливает его до 2000-4000Гс. Это усиление делает погружённые силовые трубки неустойчивыми, обуславливая их появление над поверхностью фотосферы на гелиографических широтах ±40° и постепенное снижение к экватору. В точках пересечения образуются пятна(первым- ведущее пятно), в областях над ними разогревается хромосфера и корона- образование факелов (флоккул)и протуберанцев (волокон).

Рис.1 Эволюция солнечного магнитного поля.

Из-за турбулентности, происходящей под фотосферой, магнитное поле центра активности становится сложным и неустойчивым- образуются новые пятна. На широте 15° центр активности достигает максимума, характеризующегося наибольшим числом пятен и солнечными вспышками. Приближаясь к широте 3° центр активности окончательно затухает.[2]

Большую часть времени жизни пятна его магнитное поле остаётся постоянным, в то время как площадь пятна по достижения максимума только убывает. Открыл Коулинг в 1946 году, сравнивая данные о магнитных полях и площади пятен, полученные в Маунт Вилсон, (рис. 2)

Рис.2.

Выведенные кривые являются усреднёнными, в них сглажены флуктуации поля ото дня ко дню, не носящие систематического характера. Следовательно, магнитное поле не создаётся вместе с пятном, а лишь «выходит» на поверхность, а затем опять опускается вниз под фотосферу.[4]

Ранее отмечалось, что при наибольшей концентрации пятен в центре активности возникают солнечные вспышки (эрупции). К их возникновению приводит взаимное движение пятен, при котором происходит изменение потока магнитной индукции, возбуждающие электрическое поле. Это поле ускоряет частицы солнечной плазмы — повышение температуры плазмы. Вспышка характеризуется резким увеличением яркости хромосферы над максимумами центров активости. Ее длительность от 5 до 40 минут, в годы максимума может достигать 3 и более часов. Количество выделяемой энергии может достигать 1033 Дж (≈ 1 млн. водородных бомб). Т.е. эрупции – это сильные взрывы, порождаемые сжатием солнечной плазмы под действием давления магнитных полей.

1.1 Количественное измерение солнечной активности

Для количественной оценки Солнечной активности наиболее часто применяют показатель относительных чисел солнечных пятен, называемых числами Вольфа, вычисляемых по формуле

Rw = k (10g + f),

гдек – коэффициент, зависящий от условий наблюдателя и вида инструмента;

g – количество групп пятен на Солнце;

f – число пятен во всех группах.

Важность этого индекса (Rw) определяется:

  1. его простотой;

  2. тем, что значения его известны начиная с 1700г. (годичные данные) или с 1749г. (месячные данные);

  3. его выдающимся гелиофизическим значением, которое выражается в значении ряда значительных корреляций с индексом W у многих важных геофизических характеристик;

  4. он в общем довольно хорошо характеризует общую напряжённость геоактивной ультрафиолетовой радиации Солнца …

Данное определение изъясняет выбор названного индекса и для настоящей работы. К тому же в настоящее время имеются методы прогноза чисел Вольфа, и установлена численная связь, хотя и не очень тесная (коэффициент корреляции между ними порядка 0,85).[3]

Основным рядом Rw считается ряд Цюрихской обсерватории, начатый в 1749г.

1.2 Классификация групп пятен

Хейлом на обсерватории Маунт-Вилсон установлено, что группы пятен могут быть разделены на три класса:

  1. Униполярные группы – одиночное пятно или группа пятен, обладающих магнитными полями одной и той же полярности.

  2. Биполярные группы, в наиболее простом случае состоят из бинарных пятен (бинарные группы) с противоположной полярностью. Ось группы (линия, соединяющая пятна) составляет небольшой угол с солнечной параллелью. Часто вместо двух пятен мы встречаемся с двумя группами мелких пятен, образующих ведущие и последующие компоненты группы, которые так же, как и отдельные пятна, обладают различной полярностью.

  3. Сложные группы пятен состоят из пятен различной полярности, расположенных весьма неправильно.

Униполярные группы представляют собой неразвитые или, наоборот, очень старые группы биполярного типа, в которых одно из пятен заменяется областью противоположной магнитной полярности. Хейл называл такие области «невидимыми пятнами» и установил их присутствие по наличию магнитного поля. Сложные группы, не представляют собой одного целого и возникают как следствие переналожение нескольких биполярных групп. Биполярная группа является основным и наиболее характерным образованием среди групп пятен.

Также Хейл открыл закон смены магнитной полярности биполярных групп, следовательно- и Солнца. В течении 11-летнего цикла солнечной активности все ведущие пятна имеют одинаковую полярность, т.е. все биполярные группы имеют одинаковую ориентировку в долготном направлении. При наступлении нового цикла эта ориентировка меняется на обратную. Данному закону следует ≈ 98% всех биполярных групп — и многие астрономы считают основным 22-летний цикл.[5]

1.3 Астрометрическое наблюдение Солнца относительно Земли

В связи с неравномерным движением вещества на Солнце различные его зоны вращаются вокруг оси с различными периодами. Для точек экватора сидерический период составляет 25 суток, а в близи полюсов он достигает 30 суток. Вследствие движения Земли вокруг Солнца его вращение представляется земному наблюдателю несколько замедленным: период вращения на экваторе составляет 27 суток, а у полюсов – 32 суток (синодический период вращения).

Поскольку Солнце вращается не как твёрдое тело, систему гелиографических координат нельзя жёстко связать со всеми точками поверхности. Условно гелиографические меридианы жёстко связываются с точками, имеющими географические широты В= ±16°. Для них сидерический период обращения составляет 25,38 суток, а синодический равен 27,28 суток. За начальный гелиографический меридиан принят тот, который 1 января 1954 года в 0h по всемирному времени проходил через точку пересечения солнечного экватора с эклиптикой.[6]

2. Межпланетная секторная структура

Конфигурация межпланетных магнитных полей (ММП) подобна спирали Архимеда. Вектор магнитного поля В имеет радиальную компоненту Вr, направленную либо внутрь, либо наружу (к Солнцу или от Солнца), и азимутальную компоненту Вφ. Межпланетное пространство разделено на чередующиеся спиральные сектора, в каждом из которых

радиальная компонента направлена либо наружу, либо внутрь (рис.3). Эта секторная структура вращается вместе с Солнцем. По данным наблюдений межпланетных полей (с помощью ракет) период вращения Солнца может быть подразделён на несколько субпериодов, каждый продолжительностью в несколько суток, в течение которых радиальная компонента направлена преимущественно наружу или внутрь. Такая последовательность субпериодов может наблюдаться в продолжении нескольких оборотов Солнца, свидетельствуя о высокой степени стабильности секторной структуры. СВ движется наружу так, как если бы магнитного поля не было. В системе отсчёта, жёстко связанной с Солнцем, магнитные силовые линии параллельны или антипараллельны направлению СВ.

Рис.3 Межпланетная секторная структура. Знаки «плюс» показывают поле направленное от Солнца, а знаки «минус» - поле, направленное к Солнцу (по наблюдениям на расстояниям Земли в течении е двух с половиной периодов вращения Солнца. Архимедова спираль указывает воображаемые границы секторов (декабрь 1964г.).

В пределах каждого сектора скорость СВ и плотность частиц систематически изменяется (рис.4).

Рис.4 Распределение (вдоль орбиты Земля) скорости и плотности солнечного ветра внутри сектора. Абсцисса отсчитывается с момента пересечения границы сектора.

Ракетные наблюдения показывают, резкое увеличение данных параметров на границе сектора. Однако плотность очень быстро уменьшается в конце второго дня после прохождения границ, а затем дня через 2 или 3 начинает медленно расти. Скорость СВ уменьшается медленно на 2 или 3 день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с умеренной магнитосферными возмущениями Солнца.

Вилкокс и Несс, сравнив наблюдаемую межпланетную секторную структуру (МСС) с конфигурацией фотосферных магнитных полей, заключили, что фотосферные магнитные поля, находящиеся в поясе гелиографической широты 15°, вытягиваются наружу СВ, образовывая устойчивые и долго живущие крупномасштабные поля малой напряжённости, существующее с другими магнитными полями. Бартельс назвал этот тип гидромагнитной активности М-возмущениями; СВ, ответственный за него, называется М-потоком, а его источник на поверхности Солнца – М-областью. Граница между двумя полярностями М-области проходит приблизительно с севера на юг и полярность не изменяется при пересечении экватора (рис.5).[9]

Рис.5 Схематическое среднее расположение границы солнечного фотосферного сектора в течении 1965г.




К развитию нового сектора приводит рост центра активности: на уровне фотосферы вызывает перераспределение магнитного поля и картины потоков СВ.



М-области часто не содержат солнечных пятен, т.к. стремятся избегать области повышенного коронарного излучения.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее