165866 (Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях)

2016-07-30СтудИзба

Описание файла

Документ из архива "Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "химия" в общих файлах.

Онлайн просмотр документа "165866"

Текст из документа "165866"

КИНЕТИКА НИЗКОТЕМПЕРАТУРНОЙ РАДИАЦИОННОЙ ПОСТПОЛИМЕРИЗАЦИИ ТЕТРАФТОРЭТИЛЕНА В СТЕКЛУЮЩИХСЯ ФТОРОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ

Способность тетрафторэтилена (ТФЭ) к полимеризации существенный образом зависит от фазового состояния, в котором находится этот мономер. При радиолизе кристаллического ТФЭ и его последующем нагревании выше температуры плавления удается получить всего лишь 1—2% полимера [1]. Низкая молекулярная подвижность мономера в кристаллической решетке, а также эффективное протекание процесса обрыва цепей в области плавления не дают возможности образоваться достаточно длинным полимерным цепям. При расстекловывании растворов мономеров резко возрастает молекулярная подвижность, обеспечивающая эффективный рост цепи при одновременном подавлении процессов обрыва, вследствие чего достаточно высока скорость конверсии [2]. Так, исследование полимеризации при расстекловывании растворов ТФЭ в матрице перфторалканов показало, что полимеризация проходит до глубоких конверсии при температурах ниже точки плавления ТФЭ [3]. Цель настоящей работы — исследование кинетики радиационной постполимеризации ТФЭ при размораживании радиолизованных стеклообразных растворов мономера в индивидуальных перфорированных соединениях.

В качестве стеклующихся растворителей использовали перфтор-2,4-диметил-3-этилпентен-2 (ФМП)

перфтор-4-метилпентен-2

и 3-Р-гидротетрафторэтокси-6-гидро-4-оксаперфторгексец-2 (ГОГ)

Для анализа фазового состояния замороженных растворов ТФЭ и измерения скоростей полимеризации использовали калориметрическую методику [4].

Газообразный ТФЭ для очистки от ингибитора пропускали через раствор H2SO4 и колонку с активированным углем.

Навеску ФМП в стеклянной калориметрической кювете освобождали от растворенного воздуха, а затем туда же намораживали требуемое количество ТФЭ и кювету запаивали. При размораживании кюветы в ней образовывался гомогенный прозрачный раствор. Полученный раствор замораживали до 77 К и облучали лучами 60Со. Облученный образец помещали при 77 К в калориметр и следили за кинетикой тепловыделения, обусловленного полимеризацией ТФЭ в ходе размораживания. После проведения калориметрического эксперимента кювету вскрывали и после удаления растворителя и не прореагировавшего ТФЭ определяли выход полимера. Из сопоставления выхода полимера и измеренного интегрального тепловыделения была определена средняя теплота полимеризации ДЯ=(150±20) кДж/моль, т. е. практически такая же, как и определенная ранее величина для полимеризации ТФЭ в матрице перфторалканов [3]. Эту величину и использовали для расчета кинетических кривых полимеризации из калориметрических измерений.

При охлаждении со скоростью ~200 К-мин-1 ФМП полностью переходит в стеклообразное состояние. Переход из стеклообразного состояния в переохлажденную жидкость в ходе размораживания наблюдается при ГС^150К (рис. 1,а).

Растворы ТФЭ в ФМП (содержание ТФЭ до 23 вес.%) также полностью стеклуются, и при размораживании таких образцов на калориметрической кривой наблюдается только «ступенька» расстекловывания, отвечающая переходу стеклообразного раствора в переохлажденную жидкость. С увеличением концентрации ТФЭ в ФМП переход системы из стеклообразного состояния в переохлажденную жидкость монотонно смещается в область более низких температур (рис. 1, а, таблица). Ранее такая же тенденция наблюдалась для стеклообразных растворов ТФЭ в перфторалканах [3].

Постполимеризация ТФЭ в радиолизованных стеклообразных растворах ТФЭ и ФМП наблюдается в узком температурном интервале в области расстекловывания системы (рис. 1,6). С ростом исходной концентрации ТФЭ в растворе Тс монотонно смещается в область низких температур, и соответственно снижается температурная область протекания полимеризации. При этом уменьшается и интегральный выход полимера (таблица).

После достижения максимума скорость постполимеризации ТФЭ быстро падает. Это уменьшение скорости не может быть связано с выработкой мономера, поскольку его конверсия при достижении максимума скорости не превышает 10—20%. Естественно, связано это падение скорости с обрывом полимерных цепей. Обрыв растущих полимерных цепей может происходит либо из-за рекомбинации растущих макрорадикалов Rp* с радикалами, образовавшимися при радиолизе ФМП БФМП, время жизни которых весьма велико как в твердом, так и в жидком состояниях [5]

либо в реакции растущего макрорадикала ТФЭ с двойной связью ФМП с образованием малоактивного стабильного радикала, неспособного из-за стерических затруднений к дальнейшему продолжению цепи

В обоих случаях должен наблюдаться линейный обрыв полимерных цепей. Тогда спад скорости постполимеризации ТФЭw во времени должен описываться уравнением

где kf и к0соответственно константы скорости роста и обрыва полимерных цепей; [Rp*] 0максимальная концентрация растущих радикалов в системе; [М] — текущая концентрация мономера. Величина [М] в условиях одного эксперимента изменяется не более чем на 10—15%, и ее убылью можно пренебречь.

Рис. 1. Калориметрические кривые нагревания необлученных растворов ТФЭ в ФМП (а) и интегральная теплота полимеризации (б) для 1 (2), 9 (2), 17 (3), 25 вес.% ТФЭ (4)

Рис. 2. Изменение скорости полимеризации и> со временем для заключительной стадии полимеризации ТФЭ в ФМП для 1 (1), 2 (2), 4 {3), 6 (4), 9 (5), 17 (0), 25 вес.% ТФЭ (7)

Теперь, если полагать, что кр и к0 в интервале температур ДГ^Ю К изменяются слабо, то спад скорости постполимеризации для каждого эксперимента, представленного на рис. 1, б, должен спрямляться в координатах lg w от t, а из наклона этих прямых можно определить величины к.

Действительно, спад скорости полимеризации во всех экспериментах (рис. 1,6) хорошо спрямляется в указанных координатах (рис. 2). Поскольку при изменении исходной концентрации ТФЭ калориметрические пики полимеризации наблюдаются в различных областях температур, то величины к0 определены из наклона прямых на рис. 2 для разных температур (таблица). Из этих данных получена температурная зависимость к0, которая в аррениусовских координатах представлена на рис. 3.

Таким образом, для температурного интервала 110—155 К имеем ка= =0,1 ехр(-800Г) с-1.

Рис. 3. Изменение константы скорости обрыва к0 (1, 2) и константы скорости роста kv (3, 4) с температурой для процесса полимеризации ТФЭ в ФМП (1, 3) и ГОГ (2, 4)

Рис. 4. Зависимость выхода полимера от дозы предварительного облучения для 1 (1', 1") п 9 вес.% (2) раствора ТФЭ в ФМП по данным калориметрических (Г, 2) и гравиметрических (1) измерений

где [М] о — исходная концентрация мономера. Отсюда следует, что предельный выход полимера q (q при £>1), образовавшегося после достижения максимума скорости полимеризации, описывается следующим уравнением:

Величина g может быть легко определена из калориметрических измерений. Таким образом, для каждого из экспериментов, приведенных в таблице, известны величины к0 и q, поэтому, пользуясь уравнением (3) можем определить величину /cp[R„]0. Поскольку условия и доза предварительного облучения во всех экспериментах не изменялись и величины радиационно-химического выхода радикалов для ТФЭ и ФМП почти не различаются, можно сделать предположение об одинаковой эффективности инициирования полимеризации и, следовательно, постоянстве величины (Rp]o в каждом эксперименте. Поэтому изменение /ep[RP]0 с температурой отражает лишь температурную зависимость константы скорости роста, которая на рис. 3 представлена в аррениусовских координатах. Энергия активации роста Ер= (14650±2100) Дж/моль. Величина предэкспоненци-ального множителя константы скорости роста может быть получена, если удается измерить величину [Rp'] 0- Спектры ЭПР в исследуемой температурной области представляют собой сложную суперпозицию спектров радикалов ТФЭ и ФМП, и поэтому определение концентрации растущих полимерных радикалов не представляется возможным.

Образующиеся при радиолизе ФМП (при 77 К) и следующем его размораживании стабильные радикалы (RCT) [5] не инициируют полимеризацию в условиях эксперимента. Действительно, после размораживания радиолизованной системы ФМПЧ-ТФЭ и проведения полимеризации (конверсия мономера 13%) по спектрам ЭПР регистрируется RCT. Однако при замораживании и повторном разогревании системы полимеризация не наблюдается, RCT не инициируют полимеризацию, как в области расстекловывания, так и при температурах выше Тс.

Общая концентрация радикалов, стабилизированных при радиолизе системы ТФЭ + ФМП, возрастает практически линейно с дозой облучения до —20 Мрад. Радиационно-химический выход радикалов GR=1,3. При размораживании радиолизованной системы ФМП + ТФЭ до 300 К, как и для чистого ФМП [5], более половины накопленных радикалов и в жидкости остается стабильным. Однако эти радикалы, как упоминалось выше, не инициируют полимеризацию. Оценки показывают, что эффективность использования накопленных при низкотемпературном радиолизе радикалов для инициирования полимеризации невысока. Так, _если предполагать, что степень полимеризации полученного полимера Р=100, то лишь 5% накопленных в ходе радиолиза при 77 К радикалов дают полимерные цепи.

С увеличением дозы предварительного облучения выход полимера в исследуемой системе монотонно возрастает и при дозах 7—10 Мрад достигает предельного значения (рис. 4). Для выяснения причины такой остановки реакции было проведено исследование влияния фотоотбеливания на процесс постполимеризации. Облучение видимым УФ-светом (Х^236 нм) стеклообразного раствора ТФЭ в ФМП при 77 К в течение 5 ч не приводит к полимеризации при размораживании, на калориметрической кривой не наблюдается тепловыделения, связанного с полимеризацией. Фотоотбеливание образца, предварительно подвергнутого f-радиолизу в тех же условиях, приводит к частичному подавлению постполимеризации, выход полимера уменьшается вдвое. Действие же УФ-света при 77 К на систему ФМП + ТФЭ, содержащую RCT, не приводит к образованию полимера при расстекловывании. Таким образом, совокупность полученных экспериментальных данных не дает основания предполагать, что ионные процессы играют определяющую роль в постполимеризации.

Была исследована также постполимеризация ТФЭ при расстекловывании других фторорганических растворителей. Соединение ГОГ при охлаждении полностью переходит в стеклообразное состояние с155 К). Растворение ТФЭ в этом соединении также приводит к смещению Тс в область более низких температур. Полимеризация предварительно облученных образцов протекает в области расстекловывания, как и для системы ФМП + ТФЭ, однако общий выход полимера выше (таблица). Спад скорости полимеризации для каждого из экспериментов, представленных в таблице, согласно уравнению (1), хорошо спрямляется в координатах lg w от t, что дает возможность определить величину к0 (таблица). По уравнению (3) были определены значения cp[Rp]0, которые также представлены в таблице. Температурные зависимости величин ка и [Rp] о для системы ГОГ + ТФЭ представлены на рис. 3.

Таким образом, для этой системы в температурном интервале 120— 150 К имеем с0=5,5ехр с-1 и кр [Rp-]=180 exp{-3500/RT} с-1 Следовательно, различия процессов постполимеризации ТФЭ при расстекловывании исследованных матриц связано с различием в константах обрыва. Уменьшение kCl при переходе от ФМП к ГОГ приводит, по-видимому, к увеличению средней длины образующихся полимерных цепей и, следовательно, к увеличению общего выхода полимера при одинаковой дозе предварительного облучения.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее