63534 (Основные показатели работы усилителей)

2016-07-30СтудИзба

Описание файла

Документ из архива "Основные показатели работы усилителей", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "63534"

Текст из документа "63534"

Основные показатели работы усилителей

Классификация усилителей

Электронным усилителем называется устройство, позволяющее преобразовывать входные электрические сигналы в сигналы большей мощности на выходе без существенного искажения их формы. Эффект увеличения мощности возможен при наличии в устройстве некоторого внешнего источника, энергия которого используется для создания повышенной мощности на выходе. Этот источник энергии, преобразуемой усилителем в энергию усиленных сигналов, называется источником питания.

Энергия источника питания преобразуется в энергию полезного сигнала при помощи усилительных, или активных элементов. Устройство, являющееся потребителем усиленных сигналов, называют нагрузкой усилителя, а цепь усилителя, к которой нагрузка подключена, – выходной цепью, или выходом усилителя. Источник входного сигнала, который нужно усилить, называется источником сигнала, или входным источником или генератором, а цепь усилителя, в которую вводят входной сигнал, называется входной цепью, или входом усилителя.

Любой усилитель модулирует энергию источника питания входным управляющим сигналом. Этот процесс осуществляется при помощи управляемого нелинейного элемента.

Обобщенная структурная схема усилительного устройства приведена на рисунке 3.1. Для обеспечения усиления сигнала усилитель (У), последовательно с которым соединен источник питания Еп, должен включать в себя нелинейный элемент, управляемый входным электрическим сигналом U1. К входной (управляющей) цепи усилителя подключен источник ЕС усиливаемого сигнала (при этом Zc – комплексное значение внутреннего сопротивления источника), а к выходной – нагрузочное устройство с сопротивлением Zн.

Рисунок 3.1. Обобщенная структурная схема усилительного устройства

Обычно, в первом приближении, сопротивления считают активными, учитывая их комплексность только при рассмотрении специфических вопросов.

Усилительные устройства находят очень широкое применение. Они являются основными узлами различной электронной аппаратуры, широко используются в устройствах автоматики и телемеханики, в следящих, управляющих и регулирующих системах, счетно-решающих и вычислительных машинах, контрольно-измерительных приборах и т.п.

Деление усилителей на типы обычно осуществляют по назначению усилителя, характеру входного сигнала, полосе и абсолютному значению усиливаемых частот, виду используемых активных элементов.

По своему назначению усилители условно делятся на усилители напряжения, усилители тока и усилители мощности. Если основное требование – усиление входного напряжения до необходимого значения, то такой усилитель относят к усилителям напряжения. Если основное требование – усиление входного тока до нужного уровня, то такой усилитель относят к усилителям тока. Следует отметить, что в усилителях напряжения и усилителях тока одновременно происходит усиление мощности сигнала (иначе вместо усилителя достаточно было бы применить трансформатор). В усилителях мощности в отличие от усилителей напряжения и тока требуется обеспечить в нагрузке заданный или максимально возможный уровень мощности сигнала. Ниже будут приведены необходимые соотношения, характеризующие усиление напряжения, тока и мощности.

В зависимости от характера входного сигнала различают усилители гармонических (непрерывных) сигналов и усилители импульсных сигналов. К первой группе относятся устройства для усиления непрерывных электрических сигналов, гармонические составляющие которых изменяются много медленнее всех нестационарных процессов в цепях усилителя. Ко второй группе усилителей относятся устройства для усиления электрических импульсов различной формы и амплитуды с допустимыми искажениями их формы. В этих усилителях входной сигнал изменяется настолько быстро, что процесс установления колебаний является определяющим при нахождении формы выходного сигнала. В пределах данного курса мы будем изучать усилители гармонических сигналов.

Полоса и абсолютные значения усиливаемых частот позволяют разделить усилители на следующие типы.

Усилители постоянного тока (УПТ) (точнее, усилители медленно меняющихся напряжений и токов) предназначены для усиления электрических колебаний в пределах от низшей частоты fн, равной нулю, до верхней рабочей частоты fв усилителя, составляющей нередко десятки и сотни килогерц. Эти усилители широко применяются в измерительной аппаратуре, устройствах автоматики и вычислительной техники. Они позволяют усиливать как переменные составляющие сигнала, так и его постоянную составляющую.

Усилители переменного тока предназначены для усиления лишь переменных составляющих входного сигнала. В зависимости от граничных значений рабочего диапазона частот усилители переменного тока могут быть низкой и высокой частоты. Для усилителей низкой частоты (УНЧ) справедливо неравенство fв – fн >> fн. Частотный спектр (УНЧ) лежит в пределах от десятков герц до десятков (сотен) килогерц. В усилителях высокой частоты усиление сигнала осуществляется в диапазоне частот, определяемых неравенством fв – fн << fв.

По ширине полосы усиливаемых частот выделяют избирательные усилители, усиливающие электрические сигналы в узкой полосе частот fв / fн < 1,1. За пределами этой полосы усиление резко падает. Эти усилители могут использоваться как на низких, так и на высоких частотах и выступают в качестве своеобразных частотных фильтров, позволяющих выделить (или подавить) заданный диапазон частот электрических колебаний. Узкая полоса частотного диапазона во многих случаях обеспечивается применением в качестве нагрузки таких усилителей одного или нескольких колебательных (резонансных) контуров. В связи с этим избирательные усилители часто называют резонансными, или полосовыми.

Широкополосные усилители, усиливающие электрические сигналы в очень широком диапазоне частот fв / fн > 1000. Эти усилители предназначены для усиления сигналов в устройствах импульсной связи, радиолокации и телевидения. Во многих случаях усиленные сигналы воспроизводятся на экране электронно-лучевой трубки и регистрируются визуально. Поэтому часто широкополосные усилители называют видеоусилителями. Помимо своего основного назначения, эти усилители с успехом используются также в устройствах автоматики, и вычислительной техники.

По роду применяемых активных элементов усилители делятся на транзисторные, магнитные, диодные, ламповые, параметрические и др. В качестве активных элементов в настоящее время в усилителях чаще используются полевые или биполярные транзисторы либо интегральные схемы. Широко применявшиеся ранее усилительные лампы в разработке новой усилительной аппаратуры практически не используются. Значительно реже, чем транзисторы и интегральные схемы, применяются активные элементы в виде нелинейных емкостей или индуктивностей и специальные типы полупроводниковых диодов.

Приведенная классификация рассматривает усилительные устройства с разных позиций. Поэтому для полной характеристики конкретного усилителя необходимо знание всех его основных признаков.


Основные технические показатели усилителей

Важнейшими техническими показателями усилителя являются: коэффициенты усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, коэффициент полезного действия, номинальное входное напряжение (чувствительность), диапазон усиливаемых частот, динамический диапазон амплитуд и уровень собственных помех, а также показатели, характеризующие нелинейные, частотные и фазовые искажения усиливаемого сигнала.

Коэффициент усиления – отношение установившихся значений выходного и входного сигналов усилителя. В зависимости от типа усиливаемой величины различают коэффициенты усиления:

по напряжению Ku = U2 / U1;

по току Ki = I2 /I1;

по мощности Кр = Р2 / Р1,

где U1, U2, I1, I2 – действующие (или амплитудные) напряжения и токи.

Так как P1 = U1 I1 и P2 = U2 I2, то коэффициент усиления по мощности Kp = Ku Ki.

Значение коэффициента усиления К у различных усилителей напряжения может иметь величину порядка десятков и сотен. Но и этого в ряде случаев недостаточно для получения на выходе усилителя сигнала требуемой мощности. Тогда прибегают к последовательному (каскадному) включению ряда усилительных каскадов (рисунок 3.2). Для многокаскадных усилителей1 общий коэффициент усиления равен произведению коэффициентов усиления отдельных каскадов. При последовательном соединении нескольких усилительных устройств произведение их коэффициентов усиления определяет общий коэффициент усиления системы, т.е.

Кобщ = К1 К2…. . Кn. (3.1)

Рисунок 3.2. Структурная схема многокаскадного усилителя

Коэффициент усиления, вычисленный по формуле (3.1), представляет собой безразмерную величину. Учитывая, что в современных усилительных схемах коэффициент усиления, выраженный в безразмерных единицах, получается довольно громоздким числом, в электронике получил распространение способ выражения усилительных свойств в логарифмических единицах – децибелах (дБ). Коэффициент усиления по мощности, выраженный в децибелах, равен

KP [дБ] = 10 lg (P2/P1) = 10 lg KP. (3.2)

Поскольку мощность пропорциональна квадрату тока или напряжения, для коэффициентов усиления по току и напряжению можно записать соответственно:

KI [дБ] = 20 lg (I2/I1) = 20 lg KI,

KU [дБ] = 20 lg (U2/U1) = 20 lg KU. (3.2*)

Обратный переход от децибел к безразмерному числу производится при помощи выражения

,

где N = 10 при расчете коэффициента усиления по мощности и N = 20 – при расчетах по напряжению и току.

Широкому использованию логарифмического представления коэффициентов усиления способствует и то, что многие направления, в которых применяются усилители, связаны с техникой, воздействующей на чувства человека. А восприятие человека описываются логарифмическими зависимостями. Например, громкость звукового сигнала, по ощущениям человека, увеличится в два раза при увеличении его мощности в 10 раз.

Если принять Кu = 1 дБ, то при определении коэффициента усиления по напряжению

.

Следовательно, усиление равно одному децибелу, если напряжение на выходе усилителя в 1,12 раза (на 12%) больше, чем напряжение на входе.

В технике электронных усилителей наиболее часто рассматривают коэффициент усиления по напряжению, поэтому при его написании индекс часто опускается. Это будет делаться также в данном пособии в дальнейшем.

Полезно помнить, что удвоение коэффициента усиления К означает увеличение этого показателя в децибелах KдБ на 6 дБ, а увеличение K в 10 раз – увеличение КдБ на 20 дБ. Изменение коэффициента усиления на 3 дБ соответствует его увеличению в 2 раз, а на минус 3 дБ – уменьшению в 2 раз (примерно 0,707 от исходной величины).

Логарифмическая мера оценки удобна при анализе многокаскадных усилителей. Действительно, общий коэффициент усиления многокаскадного усилителя при переходе к логарифмическим единицам измерения определяется в отличие от (3.2) суммой коэффициентов усиления отдельных каскадов, т.е.

Kобщ [дБ] = K1 [дБ] + +К2 [дБ] +... + Кn [дБ].

Коэффициенты усиления по напряжению и току являются величинами комплексными, что отражает наличие фазовых сдвигов усиливаемого сигнала. Например, для коэффициента усиления по напряжению имеем:

,

или

,

где Кm = (Uвых / Uвх) – модуль коэффициента усиления;

= (вых – вх) – угол сдвига фаз между выходным и входным напряжениями.

Обычно, когда рассматривают коэффициент усиления, имеют ввиду его модуль. Фазовый сдвиг (аргумент коэффициента усиления) анализируют отдельно. Значения, как модуля, так и фазы зависят как от величины параметров схемы усилителя, так и от частоты усиливаемого сигнала. Для их описания используют так называемые амплитудно-частотную и фазо-частотную характеристики.

Частотная и фазовая характеристики

Амплитудно-частотной характеристикой (АЧХ) называется зависимость модуля коэффициента усиления К усилителя от частоты входного сигнала f (либо от круговой частоты = 2 f).

Примерный вид частотной характеристики изображен на рис.1.4,a.

Для оси абсцисс обычно используют логарифмический масштаб. Это вызвано тем, что частотный диапазон современных усилителей может быть очень велик и, если применить линейный масштаб по частоте, то такая характеристика будет неудобна для использования, так как все нижние частоты будут сжаты у начала координат, а область верхних частот окажется слишком растянутой. Поэтому при построении амплитудно-частотных характеристик частоту по оси абсцисс удобнее откладывать не в линейном, а в логарифмическом масштабе – для каждой частоты фактически по оси откладывается величина lg f, а подписывается значение частоты f.

а)

б)

Рисунок 3.3. Амплитудно- и фазочастотная характеристики усилителя

Коэффициент усиления на графике может быть представлен по-разному – либо в абсолютных, либо в относительных значениях. Применение относительных значений обусловлено значительным технологическим разбросом значений коэффициента усиления отдельных образцов реальных усилителей. Поэтому для удобства взаимного сопоставления АЧХ усилителей с различными значениями Км их обычно нормируют, представляя выходной параметр в виде относительной величины, т.е.

N(ω) = K(ω) / Kmax,

где К(ω) и Km – коэффициент усиления на частоте ω и максимальное значение коэффициента усиления.

Очень часто коэффициент усиления отложен в децибелах. В этом случае, по существу, по оси ординат также используется логарифмический масштаб применительно к относительному коэффициенту усиления (коэффициенту усиления, выраженному в «разах»).

Как видно из рисунка 3.3, а, при изменении частоты входного сигнала от нуля до бесконечности модуль коэффициента усиления вначале возрастает, достигая постепенно на некоторой частоте максимальной величины К0, а затем вновь уменьшается. Основная причина этих изменений – наличие в схеме реактивных элементов. Причиной частотных искажений является присутствие в схеме усилителя реактивных элементов – конденсаторов, катушек индуктивности, междуэлектродных емкостей усилительных элементов, емкости монтажа и т.п. Зависимость величины реактивного сопротивления от частоты не позволяет получить постоянный коэффициент усиления в широкой полосе частот.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее