63334 (Физические основы распространения излучения по оптическому волокну), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Физические основы распространения излучения по оптическому волокну", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "63334"

Текст 2 страницы из документа "63334"

Окно прозрачности — это длина световой волны излучения, которую волокно передает с наименьшим затуханием. Длина волны измеряется обычно в нанометрах (нм). Самые распространенные значения длины волны — 850, 1300, 1310 и 1550 нм. Большинство волокон имеет два окна — т. е. оптическое излучение может передаваться на двух длинах волн. Для многомодовых оптических волокон это 850 и 1310 нм, а для одномодовых — 1310 и 1550 нм.

4. Физика светопередачи

В градиентном световоде рефракция приводит к самофокусировке отдельных лучей на осевой линии, при этом их траектории представляют собой синусоиды, а для немеридиональиых лучей - винтовые линии.

Удержание излучения внутри оптически более плотной центральной части световода обеспечивается не для всех лучей, а лишь для той их части, которые падают на торец не слишком косо (угол падения отсчитывается от нормали к плоскости торца). Для каждого световода имеется некоторый критический угол φ0 определяющий его угловую апертуру: лишь лучи с углами распространяются по волокну. Величина называется числовой апертурой и является важной характеристикой световода; именно этот параметр входит во многие расчетные формулы. Излучение, заключенное внутри конуса с углом при вершине представляет собой направляемые или каналируемые лучи (моды). Если то после многократного повторения акта отражения - преломления на границе сердцевина - оболочка вся энергия луча перейдет в оболочку и удержится в ней, если выполняется условие полного внутреннего отражения на внешней границе оболочки. Эта часть излучения представляет собой вытекающие или оболочечные лучи (моды). Если условие не выполняется, то лучи выходят и из оболочки - это излучаемые моды. При больших длинах распространения вытекающие лучи поглощаются в оболочке (менее прозрачной, чем сердечник) и в процессе светопередачи по волокну участвуют только внутриапертурные направляемые лучи.

Описанным механизмом светопередачи обусловлена и дисперсия волокна, заключающаяся в различии групповых скоростей составляющих оптического излучения. Этот эффект вызывается двумя причинами:

во-первых, лучи с разными углами падения проходят в световоде различные расстояния и,

во-вторых, свойства материала зависят от длины волны излучения, а любой реальный источник не строго монохроматичен.

Иными словами, дисперсия волокна, трактуемая более широко, чем это принято в традиционной оптике, зависит не только от степени когерентности излучения, но и от геометрических характеристик волокна.

Согласно сказанному выделяют три составляющие дисперсии:

межмодовую (или волноводную), обусловленную различием групповых скоростей различных мод [см. формулу (1.25)];

внутри-модовую, обусловленную нелинейной зависимостью постоянной распространения данной моды от длины волны; материальную- (дисперсию материала), выражающуюся в зависимости показателя преломления среды от длины волны.

Сушествование этих составляющих однозначно вытекает из анализа формул (1.16), (1.25) и (1.46). Отметим, что модовая дисперсия может иметь место и тогда, когда показатель преломления среды не зависит от λ, т. е. дисперсия материала D = 0.

Дисперсия подобно инерционным процессам в электрических цепях и электронных приборах проявляется в завале частотной характеристики световода (зависимость интенсивности излучения на выходе от частоты модуляции) и в искажении передаваемых импульсов света (расплывание, уширение). Любой из видов дисперсии тем существеннее, чем протяженнее световод (временное расхождение между двумя лучами «набегает» по мере их распространения); поэтому для характеристики инерционности используют временные параметры, приведенные к единице длины световода: полоса пропускания f0 МГц-км; постоянная дисперсии нс/км; уширение импульса нс/км. Величина f0 определяется по спаду частотной характеристики на 3 дб, - по времени нарастания импульса в е раз, - по расплыванию единичного импульса на уровне половины его амплитуды. Между этими параметрами имеется простая взаимосвязь:

Для оценки инерционности световода длиной L величины умножаются, а f0 делится на L

Качественное сравнение двух типов волокон приводит к заключению, что градиентные световоды должны иметь лучшие-дисперсионные свойства. В них луч света, распространяющийся по искривленной траектории, значительную часть пути проходит в областях с уменьшенным значением n, т. е. с большей скоростью, чем, например, осевой луч. Поэтому при различии длин двух световых путей время их прохождения лучами может оказаться практически одинаковым. В световоде со ступенчатым изменением показателя преломления эффект выравнивания времени распространения не имеет места, так как скорость распространения света по всему сечению сердечника постоянна. По существу стремление ослабить дисперсионные эффекты и явилось основным стимулом развития градиентных световодов.

Основы теории.

Ряд полезных соотношений может быть получен с помощью математического аппарата лучевой теории, пренебрегающего конечностью длины волны света и нелинейными эффектами.

Если на торец ступенчатого волокна (рис. 9.1) из среды с показателем преломления n0 поступает поток излучения, то по закону отражения - преломления совместно для поверхностей торца и границы сердцевина - оболочка

где — показатели преломления сердцевины и оболочки -световода. Это прямо следует из соотношений и Обычно излучение приходит из воздуха тогда

где и - соответственно абсолютная и относительная разности показателей преломления сердцевины и оболочки. Изгиб световода приводит к тому, что угол между лучом и границей раздела сердечник — оболочка возрастает и угловая апертура уменьшается. Используя ту же схему расчета и учитывая, что радиус изгиба - диаметр сердцевины), получаем, что снижение числовой апертуры до 90% от своего, первоначального значения произойдет при

Окончательное выражение в (9.4) получено при При типичных мкм и имеем

Определение гизг.мин условно: за критерий принято в ряде случаев допустимыми являются большие или меньшие отклонения от для неизогнутого световода, при этом изменяется и гизг.мин. Отметим также, что по (9.4) определяют только исходя из условия изменения апертуры; практически Более чувствительными к изгибу могут оказаться дисперсионные эффекты или характеристики, связанные с механической прочностью волокна.

Рис. 9.1. Ход световых лучей в ступенчатом световоде до (1) и после (2) изгиба

Применительно к градиентному световоду расчеты по лучевой теории для малых углов падения дают траекторию луча в виде периодической функции (в простейшем случае синусоиды), причем в общем случае значение периода зависит от координаты и угла вода. Однако при достаточно малом практически для любого конкретного закона изменения n периоды для всех лучей оказываются одинаковыми, т. е. осуществляется условие самофокусировки. Для типичных градиентных световодов с период самофокусировки около

Лучевая теория позволяет провести полу количественную оценку и межмодовой дисперсии. Из рис. 9.1 видно, что для двухслойного световода разница времен распространения центрального осевого луча и луча с на единичной длине

(9.5)

где c - скорость света; L км; , мкс/км. Последнее равенство в (9.5) получено для ; таким образом, для типичного ступенчатого световода с имеем нс/км.

Выражение (9.5) определяет верхнюю границу постоянной времени волноводной дисперсии (всегда (, конкретное значение которой зависит от закона углового распределения, интенсивности света (т. е. от относительного вклада отдельных лучей).

Более детальную информацию о закономерностях распространения излучения в волокне дает волновая (или модовая) теория,, базирующаяся на строгом решении системы уравнений Максвелла. При этом волокно моделируется как цилиндрический диэлектрический волновод. Преобразование общего уравнения (1.27) показывает, что число каналируемых (направляемых) мод, поддерживаемое в двухслойном волноводе со ступенчатым показателем преломления,

где V - приведенная групповая скорость распространяющегося излучения с длиной волны λ

Анализ (1.27) показывает, что лишь одна мода (так называемая TE0 мода) может поддерживаться световодом при любых, значениях V (в лучевой теории этой моде соответствует луч с ); прочие моды могут существовать лишь при -

Таким образом, неравенство есть условие существования одномодового режима, которое для ступенчатого световода приобретает вид:

Одномодовый режим тем легче реализовать, чем больше λ и меньше NA

Дадим несколько численных оценок (9.6) — (9.8). Входящее в эти формулы значение λ относится к материалу световода; когда же говорится о длине волны излучения лазера, то имеется ввиду ее значение для воздуха. При переходе от воздуха к сердечнику длина волны излучения уменьшается в n1 раз. С учетом сказанного получаем, что в типичном двухслойном световоде с dc = 50 мкм и NA=0,2 при λ=0,8мкм число направляемых мод 2000. Для реализации в световоде одномодового режима для .лазерного излучения с λ =1,3 мкм требуется при 0,1 диаметр сердечника 7 мкм.

Анализ частных решений волнового уравнения (волноводных мод) показывает, что они описываются функциями, монотонно спадающими (обычно экспоненциально) к периферии сердечника, но в то же время не обрывающимися на границе сердечник оболочка (рис. 9.2). Иными словами, направляемые моды частично просачиваются в оболочку, т. е. отражение происходит не на геометрической поверхности раздела, а в некоторой приповерхностной области (рис. 9.2,а). Расчет показывает, что для направляемых мод с малыми углами падения (распространяющихся при малых значениях доля мощности, переносимая по оболочке, может быть значительной: для моды приV =1 она составляет 70%, а при V=2,4 — всего 16%. Характерно и то, что при V= 1 поле -моды проникает в оболочку на глубину порядка Отсюда, в частности, следует важность чистоты не только сердечника, но и оболочки для маломодовых (и особенно одномодовых) волокон, а также необходимость достаточно большого диаметра оболочки

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее