10443 (Процессинг РНК. Теломеры и теломераза)

2016-07-30СтудИзба

Описание файла

Документ из архива "Процессинг РНК. Теломеры и теломераза", который расположен в категории "". Всё это находится в предмете "биология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "биология" в общих файлах.

Онлайн просмотр документа "10443"

Текст из документа "10443"

ЛЕКЦИЯ

ПРОЦЕССИНГ РНК


Процессинг РНК у эукариот

Итак у эукариотов первоначальный «транскрипт» с ДНК значительно больше, чем зрелая РНК. Наряду со «значащими» участниками рибонуклеотидной последовательности транскрипта, так называемыми «экзонами», которые войдут в готовую молекулу РНК, в нем имеются и лишние, «молчащие» участки — «интроны», подлежащие удалению (прозрачка 18). Заметим, что у эукариотов соотношение интроны/экзоны (по длине) равно 9:1. Для прокариотов —соотношение обратное, 1:9.

Все интроны транскрибируются в составе РНК-предшественника и впоследствии удаляются в процессе разрыва-воссоединения – сплайсинга. Сплайсинг происходит еще в ядре, перед выходом РНК в цитоплазму. При этом должна быть сохранена (или установлена) правильная рамка считывания. Явление сплайсинга у эукариотов не позволяет по аминокислотной последовательности белка восстановить последовательность нуклеотидов в кодирующем его участке ДНК. У прокариотов, к счастью, явление сплайсинга наблюдается редко, и соответствие последовательностей РНК и ДНК, как правило, сохраняется.

Выделяют четыре вида интронов, и, соответственно, четыре механизма сплайсинга

Виды интронов

  1. Интроны генов ядерных мРНК.

Первыми были обнаружены интроны в ядерных генах, кодирующих белки. Их размер варьирует от 100 п.н. до 10 т.п.н. и более. Наиболее характерной отличительной чертой всех этих интронов является наличие специфических последовательностей вблизи их 5`- (левой, или донорной) и 3`-(правой, или акцепторной) концов (т.е. на стыках интронов и экзонов или в сайтах сплайсинга).

Нуклеотидные последовательности в местах соединения экзонов и интронов весьма консервативны и практически одинаковы во всех генах ядерных мРНК почти у всех изученных видов (прозрачка 20). 5`-сайт сплайсинга чаще всего фланкирует последовательность ЦRГ (где R - пурин), а 3`-сайт – всего один остаток Г. тем не менее последовательности фланкирующие интроны извне могут значительно варьировать, а мутации в них никогда не предотвращают сплайсинг, хотя и могут влиять на его скорость. Первыми двумя нуклеотидами на 5`-конце интрона в РНК почти всегда являются ГУ (исключение, ГЦ, встречается всего в двух случаях); следующие четыре нуклеотида могут немного варьировать, но, по-видимому, канонической является последовательность АГАГУ. Замена остатка Г или У в месте сочленения обычно блокирует сплайсинг, а замена соседних оснований влияет на сплайсинг по-разному. Указанные шесть нуклеотидов на 5`-конце интрона и определяют специфическую функцию 5`-сайта сплайсинга. На 3`-конце интрона всегда находится пара АГ. Мутации, приводящие к замене константных А и Г на другие основания, также блокируют сплайсинг в этом сайте.

Остаток А вблизи 3`-конца интрона играет важную роль в сплайсинге ядерных промРНК. В интронах млекопитающих этот остаток не находится в фиксированном положении или в какой либо определенной последовательности, поскольку его роль вероятно, может играть любой из нескольких остатков А, расположенных на участке от 18 до 37 нуклеотида перед 3`-сайтом сплайсинга. Однако мутации, которые затрагивают соседствующие с указанным остатком А последовательности, приводят к существенному уменьшению эффективности сплайсинга in vitro; следовательно, хотя этот остаток и не принадлежит какой-то определенной последовательности его окружение влияеть на сплайсинг.

В интронах могут содержаться разные генетические элементы, например энхансеры, другие гены, возможно, сигналы репликации и упаковки хромосомы или последовательности, необходимые для упаковки промРНК в рибонуклеотидные частицы.

Сплайсинг ядерной про мРНК.

Сплайсинг ядерной про мРНК осуществляется в ядре, возможно, одновременно с транскрипцией для одних генов, и лишь после завершения транскрипции для других.

Цис-сплайсинг. Первым этапом сплайсинга является сборка комплекса сплайсинга. Самые ранние продукты, обнаруживаемые в процессе сплайсинга in vitro образуются в результате точного расщепления в 5`-сайте сплайсинга один из них содержит 5`-экзон, а другой – интрон и 3`-экзон (прозрачка 22). Расщепление в 5`-сайте должно предшествовать расщеплению в 3`-сайте. В ходе реакции накапливаются два продукта: правильно лигированные экзоны и свободный целый интрон. Как продукт начального расщепления, так и вырезанный интрон содержат структуры типа лассо.

Вырезанию интрона в форме лассо и лигированию двух экзонов для сплайсинга ядерных про мРНК требуется множество ядерных факторов-белков и рибонуклеопротеидных комплексов (мяРНП). Комплекс, состоящий из множества субъединиц, который катализирует сплайсинг, называют сплайсингосомой. Сплайсингосома состоит из интрона, связанного по меньшей мере с пятью разными мяРНП и некоторыми вспомогательными белками, обычно не связанными с этими мяРНП. Сплайсингосомы образуются путем спаривания молекул РНК, присоединения белков к РНК и связывания этих белков друг с другом (прозрачка 23). Конечный результат сплайсинга в случае про мРНК: интрон вырезается, а фланкирующих его экзона соединяются.

Транс-сплайсинг. До сих пор, говоря о сплайсинге, мы рассматривали внутримолекулярные, или цис-реакции. А существует ли межмолекулярный или транс-сплайсинг? Иными словами, может ли происходить легирование двух экзонов, находящихся в разных молекулах РНК, с одновременным удалением фланкирующих их интронов? Транс-сплайсинг является важным этапом внутриклеточного образования всех мРНК у Tripanosoma (прозрачка 25). Кроме того, возможность межмолекулярного сплайсинга продемонстрирована в опытах in vitro (прозрачка 24).

  1. Интроны в генах тРНК. Размер интронов в генах тРНК колеблется от 14 до примерно 60 нуклеотидов, но они локализуются всегда в одном и том же месте: через один нуклеотид от 3`-конца антикодона (прозрачка 26). Как правило, если ген данной тРНК имеет интрон, то все другие гены в пределах вида кодирующие эту тРНК тоже содержат такой же интрон. Однако у генов, кодирующих разные тРНК внутренний и фланговый участки интронов заметно различаются. Установлено, что удаление интрона гена супрессора тРНКтир при помощи направленного мутагенеза не влияет на способность к экспрессии при введении в клетки. И все же, весмотря на то, что эта тРНК транскрибируется и процессируется нормально, остаток У в антикодоне не модифицируется как обычно с образованием ψ. Является ли это указанием на роль интронов в посттранскрипционной модификации тРНК или мы имеем дело с уникальным свойством тРНКтир – не ясно.

Сплайсинг тРНК. Механизм удаления интронов в тРНК лучше всего изучен у дрожжей, но некоторая информация есть в опытах с другими низшими эукариотами и растениями.

Задача состоит в том, что нужно вырезать интрон в антикодоновой петле. У дрожжей (прозрачка 26) здесь включаются специфические ферменты – эндонуклеазы, которые узнают эти последовательности и расщепляют про-тРНК в обоих сайтах сплайсинга с образованием указанных концов, полифункциональный белок, который катализирует все реакции кроме фосфатазной, 2`фосфатазы, лигазы и АТФ (в этом случае в месте сочленения обоих экзонов находится фосфатная группа, которая до этого была концевым фосфатом АТФ ). У позвоночных (прозрачка 27) три указанные реакции катализируют отдельные ферменты. При этом каждый фермент участвует только в сплайсинге тРНК. Отметим, что фосфат в месте соединения двух экзонов ранее находился в месте сочленения экзона и интрона.

  1. Особые типы интронов: группа I.

Гены ядерных рРНК некоторых низших эукариот содержат особые интроны и имеют уникальный механизм сплайсинга. Подобные интроны обнаружены во многих генах, но ни один из них не был выявлен в генах позвоночных.

Интроны группы I отличаются друг от друга по размеру, они имеют ряд общих свойств:

А) они сами катализируют свой сплайсинг, который может протекать in vitro в отсутствии каких-бы то ни было белков;

Б) информация, необходимая для сплайсинга, содержится во множестве относительно коротких внутренних последовательностей внутри интрона, которые обеспечивают укладку молекулы с образованием характерной пространственной структуры.

В) сплайсинг инициируется свободным гуанозином или любым из его 5`-фосфорелированных производных

Г) конечными продуктами сплайсинга являются рРНК и линейная РНК, размер которых несколько меньше, чем размер интрона.

Самосплайсинг интронов группы I . про-рРНК, прототип интрона группы I осуществляется при участии последовательных реакций трансэтерификации, в которых акты фосфодиэфирного обмена не сопровождаются гидролизом. (прозрачка 28).

  1. Особые типы интронов: группа II.

Интроны группы II распространены менее широко. Они обнаружены в двух митохондриальных генах дрожжей, кодирующих одну из субъединиц цитохромоксидазы и цитихром b; интересно, что в этих генах присутствуют также интроны группы I.

Сплайсинг интронов группы II.

Интроны группы II также подвергаются самосплайсингу in vitro, но в этом случае реакция инициируется не экзогенным гуанозином, а остатком входящим в состав самого интрона (прозрачка 29) Интроны группы II, высвобожденные после сплайсинга представляют собой лассоподобные структуры, в которых 5`-концевой фосфат РНК интрона соединен фосфодиэфирной связью с 2`-гидроксильной группой внутреннего нуклеотида.

Альтернативный сплайсинг

При сплайсинге большей части про-мРНК каждый интрон вырезается в соответствующих 5`-и 3`-сайтах сплайсинга. В результате все экзоны и порядок их расположения в транскрипте сохраняются в зрелой мРНК и образуют непрерывную последовательность (конститутивный сплайсинг). Однако сплайсинг некоторых про-мРНК протекает по-разному с образованием семейства близких по строению мРНК, каждая из которых состоит из специфического набора экзонов и кодирует одну из изоформ белков одного семейства. Такой способ процессинга РНК называется альтернативным сплайсингом (прозрачка 30). Растет число генов из разных организмов, от Drosophila до человека и их вирусов, о которых известно, что при созревании их про-мРНК используется альтернативный сплайсинг. Эти гены кодируют многие белки, в том числе некоторые белки, участвующие в формировании цитоскелета, мышечном сокращении, сборке мембранных рецепторов, пептидных гормонов, в промежуточном метаболизме и транспозиции ДНК (перемещение некоторых сегментов ДНК в другие геномные локусы).

ЛЕКЦИЯ

ТЕЛОМЕРЫ И ТЕЛОМЕРАЗА. РИБОЗИМЫ.

ОБРАТНАЯ ТРАНСКРИПЦИЯ

С помощью метода культивирования клеток животных и растений in vitro клетки самых разнообразных тканей человека можно выращивать на специально подобранных питательных средах, подобно бактериям или другим одноклеточным организмам. Множество клеточных культур человека изначально получено из клеток раковых опухолей. Эти клетки могут делиться в культуре неограниченное число раз (поэтому их называют бессмертными, или иммортализованными). Биологи долгое время пребывали в уверенности, что в оптимальных условиях бесконечно долго могут делиться и нормальные клетки человека и животных (как в культуре, так и в организме).

Однако в начале 1960-х годов Леонард Хейфлик установил, что в клеточных культурах нормальные диплоидные (соматические) клетки человека способны делиться лишь ограниченное число раз. При этом предельное число делений (Ограничение на число клеточных делений и называют лимитом Хейфлика.) сильно зависит от возраста индивидуума, которому эти клетки изначально принадлежали. Так, клетки, которые брали у новорожденных, делились в культуре 80-90 раз, а у 70-летнего человека - только 20-30 раз. Достигнув "лимита Хейфлика", клетки переходят в состояние одряхления (которое в англоязычной, а теперь зачастую и в русской литературе называется сенесенсом, senescence), которое характеризуется резким изменением метаболизма, и в первую очередь нарушением репликации ДНК. Вслед за этим состоянием обычно следует гибель клеток.

В январе 1998 года средства массовой информации во всем мире буквально взорвались сообщениями о том, что группе американских ученых удалось заставить нормальные клетки человека преодолеть "лимит Хейфлика" почти вдвое. Вместо того чтобы состариться и умереть, клетки продолжали делиться и выглядели юными. При этом превращения их в раковые клетки (то есть злокачественной трансформации) не происходило: по всем признакам клетки, потерявшие способность стариться, были нормальными. В газетах немедленно появились статьи с заголовками вроде "Генетики уткнулись в бессмертие", "Лекарства от старения будут доступны, как аспирин", "Таблетки от старости становятся реальностью" и т.п.

Что же произошло на самом деле? Ученые из лабораторий Джерри Шейя, Вудринга Райта, работающие под патронажем фирмы "Джерон корпорейшн" ("Geron Corporation"), с помощью изящных генетических манипуляций заставили в нормальных клетках человека работать фермент теломеразу, активность которой до этого была нулевой. Теломераза участвует в образовании теломер-специальных структур, расположенных на концах линейных хромосом эукариот. Таким образом, обновление теломер и стало причиной спасения клеток от одряхления.

ТЕЛОМЕРЫ

Теломеры – это

- специализованные концевые районы линейной хромосомной ДНК,

- состоят из многократно повторяющихся коротких нуклеотидных последовательностей.

- В состав теломер входят также многие белки, специфически связывающиеся с теломерными ДНК-повторами.

- Таким образом, теломеры (так же, как и все другие районы хромосомы эукариот) построены из дезоксинуклеопротеидов (ДНП), то есть комплексов ДНК с белками.

- Существование таких участков было постулировано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям.

- они заключили, что естественные концы линейных хромосом защищены специальными структурами. Г. Мёллер предложил называть их теломерами (от греч. телос - конец и мерос - часть).

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее