135816 (Устройство измерения отношения двух напряжений), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Устройство измерения отношения двух напряжений", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "135816"

Текст 3 страницы из документа "135816"


Рисунок 1.6 -Дифференциальный каскада на биполяр­ных транзисторах

1.3.4 Усилители постоянного тока с преобразованием частоты усиливаемых сигналов

Для усиления сигналов с напряжением ниже сотен микровольт усилители постоянного тока прямого усиления непригодны, и для этой цели приходится использовать усилители постоянного тока с преобразованием частоты усиливаемых сигналов.

В таких усилителях напряжение усиливаемых сигналов, имеющих спектр частот от 0 до  при помощи балансного модулятора модулирует по амплитуде напряжение генератора несущей частоты , в результате чего на выходе модулятора получают модулированные колебания несущей частоты со спектром боковых, частот ±

Эти колебания подают на вход усилителя переменного тока рассчитанного на пропускание полосы частот ±; усиленные модулированные колебания детектируются балансным демодулятором, выделяющим из этих колебаний усиленный сигнал первоначальной формы который после отфильтровывания остатка несущей частоты и ее гармоник поступает в нагрузку. Для неискаженного усиления несущая частота  должна по крайней мере в 5—10 раз превышать наивысшую частоту в усиливаемых сигналов.

Дрейф усилителей постоянного тока с преобра­зованием в основном определяется дрейфом балансного модулятора. К достоинствам усилителей постоянного тока с преобразованием можно отнести малый уровень дрейфа, отсутствие необходимости стабилизации источников питания, простоту введения обратной связи и регулировки усиления; их недостатком является сложность устройства, включающего в себя, кроме усилителя (У), генератор несущей частоты (Г), балансные модулятор (М), демодулятор (ДМ) и фильтр(фнч). В УПТ с модуляцией сигнала удаётся получить дрейф начального уровня менее 2мкВ/°С [6]. Схема описываемого УПТ представлена на рисунке 1.7.

Uвх

Uвых


Рисунок 1.7 – Структурная схема усилителя постоянного тока с преобразованием частоты усиливаемых сигналов

1

.4 Выводы

На основании анализа, проведенного в данном разделе обозначим основные принципы построения разрабатываемого устройства. Так для выполнения непосредственно операции деления в микропроцессоре необходимо воспользоваться алгоритмом деления, при котором числа представляются в формате с плавающей запятой. Это позволит обеспечить необходимую точность вычислений и избежать дополнительной погрешности при измерении отношения напряжений.

Усиливать входные сигналы стоит при помощи усилителей постоянного тока, в которых постоянное напряжение преобразуется в переменное, а только затем усиливается. Однако необходимости преобразовывать переменное напряжение обратно в постоянное при решении нашей задачи нет. Поэтому при реализации разрабатываемого устройства целесообразно перейти от сигналов с постоянным напряжением к переменным, что можно осуществить при помощи обычного коммутатора. Таким образом, это решение существенно облегчит реализацию усилительного тракта прибора и решит проблему дрейфа нуля, не увеличив при этом погрешность измерений. Так как в соответствии с техническим заданием динамический диапазон входных напряжений достаточно большой (60 дБ ) то в тракте усиления необходимо использовать усилитель с переменным коэффициентом передачи, которые в настоящее время выпускаются промышленностью. Это обеспечит сжатие динамического диапазона сигнала, поступающего на вход аналого-цифрового преобразователя АЦП. Такое решение позволяет резко снизить относительную погрешность, возникающую из-за квантования преобразуемого сигнала. Процесс обратного расширения динамического диапазона будет осуществлять в процессоре.

Для снижения погрешности, причиной которой являются шумы, необходимо применять малошумящие усилители. Кроме того необходимо будет реализовать цифровую фильтрацию, что обеспечит увеличение отношения сигнал – шум, а следовательно уменьшит погрешность измерения.

2 РАЗРАБОТКА ПРИНЦИПОВ ПОСТРОЕНИЯ ИЗМЕРИТЕЛЯ ОТНОШЕНИЙ.

2.1 Функциональная схема

На основании выводов, сделанных в первом разделе проведем разработку функциональной схемы прибора. Эта схема приведена на рис.2.1.

Так как разрабатываемое устройство должно измерять отношения весьма малых напряжений ( от 10 мкВ до 10мВ ) то совершенно очевидно, что данные напряжения необходимо усиливать. Причём целесообразно данные напряжения усиливать по одному тракту усиления. Данное техническое решение позволит исключить дополнительную погрешность связанную с нестабильностью параметров элементов схемы. Два тракта усиления собранные на одной элементной базе будут всегда иметь небольшое различие в коэффициентах передачи из за временной нестабильности, (воздействие на схему различных дестабилизирующих факторов) и старения. В свою очередь это небольшое отличие является причиной неточности при измерении той или иной величины, например, как в данной работе, при измерении отношения двух напряжений. Кроме того, использование одного тракта усиления позволит уменьшить стоимость разрабатываемого устройства за счёт сокращения используемых элементов, что также не маловажно при проектировании реального устройства. Для реализации выбранного технического решения входные сигналы будем подавать на единый тракт усиления последовательно, через коммутатор К, управляемый центральным процессором П1.

Как было описано в первой главе данной работы, причиной большой погрешности в измерениях при усилении постоянных напряжений может являться дрейф нуля. Во избежание данного явления целесообразно перейти от постоянных напряжений к переменным. Этот переход можно осуществить при помощи коммутатора К, который последовательно будет подключать ко входу предварительного усилителя ПУ либо один из входных сигналов, либо общий провод, потенциал которого равен нулю. Таким образом, для осуществления схемы с одним трактом усиления и перехода от сигналов постоянного напряжения к сигналам с переменным напряжением используем трехканальный коммутатор, на один вход которого подается первый входной сигнал, на второй вход – второй входной сигнал. Третий вход коммутатора необходимо присоединить к общему проводу. Центральный процессор должен управлять коммутатором таким образом, чтобы на выходе коммутатора было сформировано две последовательности прямоугольных импульсов одинаковой частоты со скважностью равной двум. Причем амплитуды сформированных последовательностей будут равны величинам напряжений входных сигналов. (Рисунок 2.2)

Рисунок 2.2 – Сигнал, формируемый на выходе коммутатора

Как уже было упомянуто выше, управляться четырехканальный коммутатор будет центральным микропроцессорным устройством. Причем частоту последовательностей прямоугольных импульсов выберем равной F=1 кГц. Частоту смены импульсных последовательностей следует выбрать исходя из расчётов времени, которое требуется на установление переходного процесса цифрового фильтра описанного далее, и времени, которое требуется процессору для выполнения заложенных в него алгоритмов обработки поступающей информации.

Далее сформированные коммутатором импульсные последовательности усиливаются предварительным усилителем ПУ. Так как поступаемый на вход ПУ сигнал имеет малый уровень (в худшем случае 10 мкВ в соответствии с техническим заданием), то усилитель, дабы не вносить большую погрешность в измерение требуемой величены, должен иметь малый коэффициент шума. Основным требованием, которому должен соответствовать выбираемый усилитель является низкий коэффициент шума. Поэтому следует выбрать малошумящий операционный усилитель. Коэффициент передачи по напряжению предварительного усилителя выберем позже.

Так как в соответствии с техническим заданием динамический диапазон входных напряжений достаточно большой (60 дБ ) то в тракте усиления необходимо использовать усилитель с переменным коэффициентом передачи. Это обеспечит сжатие динамического диапазона сигнала, поступающего на вход аналого-цифрового преобразователя АЦП. Такое решение позволяет резко снизить относительную погрешность, возникающую из-за квантования преобразуемого сигнала (абсолютное значение этой погрешности равно единице младшего разряда). Обратное расширение динамического диапазона будем осуществлять в центральном процессоре путем деления полученного кода на коэффициент усиления управляемого усилителя. Используем двуполярный двенадцатиразрядный АЦП с максимальной амплитудой сигналов подаваемых на АЦП равной Umax=2 В. В двенадцатиразрядном АЦП один разряд знаковый. Зная это можно найти число уровней квантования, которое равно N=211=2048. Тогда шаг квантования

. (2.1)

Относительную погрешность вносимую при оцифровке сигнала можно оценить как отношение шага квантования к входному сигналу.

. (2.2)

При максимальном значении амплитуды подаваемого на АЦП сигнала погрешность равна: δmin =(0,001/2)*100% =0,05%. Это будет минимальная погрешность вносимая АЦП. Подберём коэффициент передачи всего усилительного тракта таким образом, чтобы минимальная амплитуда сигнала подаваемого на вход АЦП была в два раза меньше максимального значения амплитуды, то есть 1 В. Погрешность при этом будет равна δmax=(0,001/1)*100% =0,1%. Это и будет максимальная погрешность АЦП. Для того чтобы погрешность не превышала данное значение, необходимо чтобы при любом значении входного сигнала, на АЦП поступала импульсная последовательность, амплитуда которой попадала бы в диапазон от 1 В до 2 В. Это можно реализовать при помощи управляемых усилителей УУ1-УУ3 коэффициенты передачи которых устанавливаются цифровым кодом с процессора.

Для обеспечения заданного динамического диапазона используем три таких усилителя включённых каскадно. Коэффициент передачи каждого может быть равен 1, 2, 4, 8. Тогда диапазон изменения коэффициента передачи всех трёх усилителей изменяется от 1 до 29=512. Управление коэффициентами усиления микросхем DA3 – DA5 осуществляет микроконтроллер DD1 типа AT90S1200 фирмы Atmel.

Для сжатия динамического диапазона сигнала используется дискретная система автоматической регулировки усиления (АРУ), анализирующая сигнал на выходе последнего усилителя и осуществляющая переключение коэффициента усиления, если уровень этого сигнала выходит за пределы диапазона 1 - 2 вольта.

Напряжение с выхода третьего управляемого усилителя поступает на первый вход компаратора, который встроен в микроконтроллер DD1 (вывод 12). На второй вход этого же компаратора (вывод 13 микроконтроллера DD1) подается напряжение с ЦАП. Напряжение на выходе ЦАП может иметь только два значения, соответствующие верхнему значению (2 вольта), либо нижнему значению диапазона выходного сигнала (1 вольт).

Управление работой ЦАП осуществляет микроконтроллер DD1, который вырабатывает соответствующие сигналы на выводах 14, 15, 16. Сначала на первый (старший) разряд ЦАП (резистор R14) подается напряжение +5В, а на второй разряд (резистор R12) – нулевое напряжение. При этом на втором входе компаратора формируется высокий уровень напряжения (2 вольта), который и сравнивается с напряжением на первом входе.

Если напряжение на первом входе компаратора превышает напряжение на втором входе, то происходит уменьшение коэффициента усиления управляемого усилителя в два раза, После этого процесс повторяется до тех пор, пока напряжение на первом входе компаратора не станет меньше, чем на втором.

Если напряжение на первом входе компаратора меньше напряжения на втором входе, то контроллер DD1 на второй разряд подает напряжение +5В, а на первый разряд – нулевое напряжение. При этом на втором входе компаратора формируется низкий уровень напряжения (1 вольт), который и сравнивается с напряжением на первом входе. Если после этого напряжение на первом входе компаратора меньше напряжения на втором входе, то происходит увеличение коэффициента усиления управляемого усилителя в два раза и процесс повторяется до тех пор, пока напряжение на первом входе компаратора не станет меньше, чем на втором.

Таким образом, в следящем режиме дискретная система АРУ удерживает напряжение на выходе третьего усилителя с управляемым коэффициентом передачи (1-2 вольта) при изменении входного сигнала во всем динамическом диапазоне изменения.

Для исключения циклических переключений на границах диапазона (1 и 2 вольта) предусмотрено введение гистерезиса. Это осуществляется с помощью младших разрядов ЦАП, которые включаются одновременно со старшим путем подачи на них напряжения +5 вольт (резистор R8) . При этом несколько увеличивается опорное напряжение, подаваемое на второй вход компаратора.

Непосредственное управление коэффициентом усиления проводит микроконтроллер DD1, устанавливая соответствующие коды на выводах 2, 3, 6. Эти коды поступают на выводы 15, 16 микросхем DA3 – DA5 и осуществляют изменение коэффициента усиления. Для проведения операции восстановления динамического диапазона (экспандирования) микроконтроллер DD1 7, 8, 9 формирует трехразрядный код коэффициента усиления управляемого усилителя, который поступает на центральный микроконтроллер. Значение коэффициентов передачи устанавливается сигналом с центрального процессора.

Зная максимальные значения коэффициентов передачи этих усилителей, можем оценить, каким должен быть коэффициент передачи предварительного усилителя. Известно, что минимальное значение амплитуды входного сигнала после коммутатора и разделительного конденсатора Uвхmin=5мкВ. При этом амплитуда сигнала подаваемого на АЦП: UАЦП=1В. тогда максимальный коэффициент передачи всего усилительного тракта :

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее