108917 (Разработка газоразрядного экрана), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Разработка газоразрядного экрана", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "108917"

Текст 3 страницы из документа "108917"

Пространственная сборка на ленту носитель.

По мере увеличения числа выводов кристаллов (500 и более), становится неизвестным создание входных и выходных КП не только по периферии кристалла, но и его центральной части. Технология АТАВ предполагает монтаж таких кристаллов на многослойные ЛН, используемые для реализации наиболее плотноупакованных межсоединений с соединениями в пределах площади кристалла. В этом случае автоматизированное присоединение выводов сочетается с применением монтажа методом "перевернутого" кристалла.

Пространственная сборка может также вызвать расслоение полиимидной пленки, несущей выводы, вследствии ее перегрева и расширения во время присоединения. Одним из путей решения этой проблемы является применение одноточечной сварки, осуществленной на установках с приваркой выводов одного за другим.

Еще одна проблема - недоступность сварных соединений в центре кристалла для визуального контроля.

Одноточечная автоматизированная сборка на ленту носитель.

Этот метод сочетает быстроту и высокую точность, характерные для простой автоматизированной сборки на ленту, и гибкость, характерную для проволочного монтажа, и позволяет осуществить сборку кристаллов, имеющих самые разнообразные размеры и формы на одной и той же установке. Этот тип сборки позволяет осуществить 8-10 присоединений внутренних или наружных выводов за 1с. При этом поверхность кристаллов должна быть абсолютно плоская.

При АСЛН многовыводных кристаллов СБИС большого размера при длине балочного вывода 280 мкм, толщине 35 мкм и ширине 100 мкм, желательно использовать не перемотку ленты с катушки на катушку, а работать с отдельными отрезками ленты во временном носителе, чтобы избежать повреждения выводов и кристаллов. В этом случае кристаллы, смонтированные на отрезке ленты, герметизируются компаундом. Время отверждения которого и ограничивает число позиций в отрезке ленты. При этом используется размер контактной площадки около 400 мкм, средняя прочность соединения при этом 300 г/вывод, отличается высокой устойчивостью к коррозии.

2.1.4. Метод переноса объемных выводов.

В этой технологии ОВ выполняются на временной подложке, затем присоединяются к концам балочных выводов ленты-носителя, что существенно снижает стоимость сборки и упрощает ее. Принцип этой технологии отражен на рис.4.

В данном случае ЛН выполнена из полиимидной пленки толщиной 125 мкм, ламинированной с медной фольгой толщиной 35 мкм, в которой формируют травлением выводную рамку с последующим ее лужением и золочением. Оптимальная толщина облуженного слоя 0.3-0.45 мкм. Временная подложка состоит из теплостойкой стеклянной пластины со слоем металлизации, который служит электродом для нанесения золотых ОВ. Подложка должна надежно поддерживать сформированные выводы и выполнить их перенос при самых низких давлениях и температурах инструмента. Качество переноса зависит от плоскостности и гладкости временной подложки, которую можно использовать многократно.

Сформированные выводы имеют форму "гриба" , высота 20-40 мкм, размер в широкой части 80*80 мкм и 20*20 мкм в нижней части. На прочность присоединения ОВ влияют его форма и чистота золота (хорошее качество присоединения наблюдается для выводов из золота 99.95%, для выводов с содержанием золота 67% наблюдается растрескивание выводов при сборке).

рис 4

2.2. Разработка технологического процесса сборки высоковольтного драйвера газоразрядного экрана на полиимидном носителе.

Для того, чтобы производить сборку полиимидного носителя с кристаллом необходимо проскрайбировать диск с кристаллами и совершить его ломку. Скрайбирование предполагают делать на установке ЭМ-225. Полуавтомат позволяет обрабатывать пластины диаметром до 150 мм. Ширина реза 40 мкм, глубина реза за один проход при скорости 100 мм/с - 140 мкм. Погрешность перемещения относительно центра при общей длине хода 150 мм - 15 мкм.

После скрайбирования и ломки необходимо выполнить внешний контроль. Контроль внешнего вида можно произвести на микроскопе типа СМ-4.

Следующим этапом техпроцесса является присоединение полиимидного носителя к кристаллу. Данная операция выполняется на автоматизированной установке ЭМ-4062. Установка позволяет изменять технологические режимы ультразвуковой сварки, что существенно сказывается на качестве сварного соединения. После присоединения выводов к контактным площадкам необходимо нанести защитное покрытие. Эту операцию выполняют в печи ПБЛ. Затем проводят технологические испытания на холод, тепло в камере МС-71.

Измерение статических параметров производится прибором "Визир-1", а измерения функционально-динамических параметров выполняют на "Элеком-Ф".

После всего кристалл загружается на 7 суток в установку "Кардинал", где при полной работе микросхемы повышается и понижается температура.

Перед тем как упаковать микросхему в тару делают еще один контроль статических и функционально-динамических параметров на установках "Визир-1" и "Элеком-Ф".

КОНСТРУКТОРСКАЯ ЧАСТЬ

Глава 3.

3.1. Анализ конструкции экрана с применением высоковольтного драйвера на полиимидном носителе.

Устройства для отображения информации применяются в системах, где информацию требуется представить в форме, удобной для визуального восприятия. Их основными компонентами являются приборы, обеспечивающие преобразование электрических сигналов в пространственное распределение яркости излучения или в распределение степени пропускания или поглощения светового излучения. С помощью этих приборов из электрических сигналов получают видимое изображение букв различных алфавитов, цифр, геометрических фигур, различных знаков, сплошных или дискретных полос, мнемосхем и др.

Преобразовательные приборы данной группы создаются на основе активных излучающих компонентов : электронно-лучевых трубок; электролюминесцентных, газонаполненных или накаливаемых источников излучения, в которых излучающие элементы выполнены в виде фигур или сегментов, или образуют управляемое матричное поле, а так же пассивных компонентов, модулирующих световой поток : жидкокристаллических, в которых пропускание или отражение света различными участками поверхности зависит от значения электрического поля; электрохромных, в которых цвет вещества зависит от значения электрического поля; электрофоретических, в которых под действием электрического поля перемещаются заряженные пигментные частицы, имеющие определенный цвет.

Наиболее часто применяют так называемые знакосинтезирующие индикаторы (ЗСИ), в которых изображения получают с помощью мозайки из независимо управляемых преобразователей электрический сигнал - свет.

Жидкокристаллические индикаторы относятся к числу пассивных приборов. В основу их работы положено свойство некоторых веществ изменять свои оптические показатели (коэффициенты поглощения, отражения, рассеивания, показатель преломления, оптическую разность хода, оптическую активность, спектральное отражение или пропускание). под влиянием внешнего электрического поля. Вследствии модуляции падающего света изменяется цвет участка, к которому приложено электрическое поле, и на поверхности вещества появляется рисунок требуемой конфигурации.

В качестве веществ, имеющих подобные свойства, используют жидкие кристаллы. Жидкокристаллическим (мезоморфным) называется термодинамически устойчивое состояние, при котором вещество сохраняет анизотропию физических свойств, присущую твердым кристаллам, и текучесть, характерную для жидкостей.

ЖК-индикаторы просты по конструкции, дешевы, имеют низкое энергопотребление, обеспечивают хорошую контрастность изображения, которая не уменьшается при увеличении освещенности, хорошо совместимы с микросхемами управления. Их недостатки : необходимость иметь подсветку при работе в темноте, узкий температурный диапазон (от -15 до +55 С), изменение параметров в течение срока хранения и при работе.

Газонаполненные приборы для отображения информации, к которым относится и наш газоразрядный экран, представляют собой источники излучения, зона свечения в которых имеет определенную форму и может управляться электрическими сигналами.

Выпускаются ЗСИ матричной конструкции, позволяющие проводить отображение графической, буквенно-цифровой и мнемонической информации. Определенное распространение получили буквенные и цифровые ЗСИ, в которых изображение получают с помощью комбинаций светящихся сегментов или целых цифр.

ЗСИ матричной конструкции имеют плоскую форму и состоят из двух пластин, на которых выполнены наборы параллельных проводников, покрытых прозрачным диэлектриком. Пластины располагаются на небольшом расстоянии друг от друга так, чтобы электроды были взаимно перпендикулярны. Камеру, образовавшуюся между ними заполняют смесью неона и других инертных газов и герметизируют.

При определенных значениях электрического поля, создаваемого в местах пересечения электродов, происходит ионизация и свечение газа. Цвет его зависит от газового состава. Форма близка к точечной. Совокупность светящихся точек образует требуемые буквы, цифры, графики или мнемосхемы. Яркость свечения определяется значением питающего напряжения, его частотой, свойствами газа и диэлектрических покрытий электродов. Последний фактор обусловлен тем, что диэлектрическое покрытие создает "емкостную связь" между электродом и газом и при данном напряжении определяет максимальное значение разрядного тока.

Рассмотрим явление свечения в газоразрядных источниках излучения.

Рис 5

Причины появления свечения поясним на примере рассмотрения газоразрядного промежутка между двумя электродами, находящимися в среде инертного газа (обычно неона Ne или ксенона He) либо их смесей см. Рис 5. Если к электродам приложить малое напряжение U (UЗАЖ) то в цепи будет протекать малый ток, обусловленный наличием в газе небольшого числа ионов, возникших вследствие воздействия теплоты, падающего света и космического излучения, а также вызванный эмиссией (излучением) электронов из электрода, находящегося под отрицательным потенциалом (катода). Это так называемый темновой разряд, при котором нет видимого свечения газа.

С повышением напряжения электроны, эмиттируемые катодом, приобретают большие скорости и начинают ионизировать газ. В результате появляются дополнительные электроны и ионы, но до точки А их недостаточно для возникновения самостоятельного разряда. За точкой А начинается самостоятельный разряд. Напряжение в точке А называется напряжением зажигания . На участке АВ происходит уменьшение напряжения при увеличении тока. За точкой В начинается тлеющий разряд (область ВС).

Физические процессы, происходящие за точкой А, можно упрощенно представить следующим образом. Электроны, испускаемые катодом под воздействием света, внешних излучений и бомбардировке катода ионами, приобретают в электрическом поле такую скорость, что начинается лавинная ионизация газа. Положительно заряженные ионы под действием электрического поля движутся к катоду и, бомбардируя его, вызывают появление дополнительных электронов, необходимых для поддержания самостоятельного разряда. Часть ионизированных и тем самым возбужденных атомов газа переходит в нормальное невозбужденное состояние путем "присоединения" электрона к положительно заряженному иону. При этом излучается квант света. Другая часть положительно заряженных ионов накапливается вблизи катода, образуя положительный пространственный заряд. Основная часть напряжения, приложенного к электродам, падает на этом небольшом прикатодном участке. Пространственные заряды положительно заряженных ионов и электронов, находящихся в газоразрядном промежутке, в значительной степени уравновешивают друг друга. Поэтому в газонаполненном приборе удается получить большие токи при сравнительно небольшом напряжении, приложенном к электродам.

Для прекращения газового разряда и потухания газонаполненного прибора необходимо уменьшить напряжение на электродах так, чтобы оно стало меньше UГОР. В этом случае самостоятельный разряд прекращается и происходит деионизация газового промежутка. Время деионизации лежит в пределах мкс.

Одним из вариантов изготовления нашего экрана может быть не газоразрядные источники излучения, а электролюминесцентные управляемые источники света , которые в настоящее время являются наиболее перспективными.

Люминесценция - это световое излучение, превышающее тепловое излучение при той же температуре и имеющее длительность, значительно превышающую периоды излучений в оптическом диапазоне спектра.

Для возникновения люминесценции в каком-либо теле, в том числе и в полупроводнике, необходимо привести его с помощью внешних источников энергии в возбужденное состояние, т.е. в состояние, при котором его внутренняя энергия превышает равновесную при данной температуре.

При воздействии электрического поля или тока появляется электролюминесценция.

Люминесценция характеризуется достаточно длительным свечением после того, как действие возбуждающего фактора прекратилось. Это обусловленно тем, что акты поглощения возбуждающей энергии отделены по времени от актов излучения. В итоге излучение при люминесценции является некогерентным и имеет достаточно широкий спектр.

Электролюминесценция в полупроводниковых элементах оптоэлектроники может быть вызвана как электрическим полем, так и током. При воздействии электрического поля на полупроводники, называемые люминофорами, возникает ударная ионизация их атомов электронами, ускоренными электрическим полем, а также эмиссия электронов из центров захвата. Вследствие этого концентрация свободных носителей заряда превысит равновесную и полупроводник окажется в возбужденном состоянии.

Возбуждение электрическим током обычно происходит в тех полупроводниках, где созданы электрические переходы. Избыточная концентрация носителей заряда в них обеспечивается или за счет инжекции неосновных носителей заряда под действием внешнего источника напряжения, или за счет лавинного и туннельного пробоев, возникающих под воздействием внешнего напряжения, приложенного в обратном направлении.

К электролюминесцентным источникам света обычно относят порошковые, сублимированные, монокристаллические фосфоры, у которых в сильных электрических полях возникает электролюминесценция.

По эффективности электролюминесцентные источники света, за редким исключением уступают лампам накаливания и газоразрядным источникам света. Однако они имеют и ряд существенных преимуществ :

- технологичность;

- высокое быстродействие;

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
423
Средний доход
с одного платного файла
Обучение Подробнее