5795-1 (Содержание и значение математической символики), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Содержание и значение математической символики", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "5795-1"

Текст 2 страницы из документа "5795-1"

Основные недостатки непозиционных систем нумерации - трудности с изображением произвольно больших чисел и, главное, более сложный, чем в позиционных системах, процесс вычислений. (Последнее, правда, облегчалось употреблением счетных досок – абаков, так что изображение чисел было необходимо лишь для конечного результата).

Крупным шагом вперед, оказавшим колоссальное влияние на все развитие математики было создание позиционных систем счисления. Первой такой системой стала вавилонская шестидесятеричная система счисления, в которой появился знак , указывающий на отсутствие разряда, выполняющего роль нашего нуля. Концевой нуль, который позволял различать, например, обозначения для 1 и 60, у вавилонян отсутствовал. Удобство вычислений в шестидесятеричной системе сделало ее популярной у греческих астрономов. К. Птолемей (II в. н.э.) при вычислениях в шестидесятеричной системе пользуется знаком «0» для обозначения отсутствующих разрядов как в середине, так и в конце числа (0, омикрон – первая буква греческого слова ovden-ничто). О вавилонской шестидесятеричной системе нам напоминает деление часа на 60 минут и минуты на 60 секунд, а также деление угла равного четырем прямым, на 360 градусов. Неудобство шестидесятеричной системы счисления в сравнении с десятичной – необходимость большого количества знаков для обозначения индивидуальных цифр (от 0 до 59), более громоздкая таблица умножения.

Создание десятичной позиционной системы счисления, одного из выдающихся достижений средневековой науки, - заслуга индийских математиков. Позиционные десятичные записи чисел встречаются в Индии с VI в. Так, в дарственной записи 595 года встречается запись числа 346 цифрами брахми (-3, -4, -6). Первую достоверную запись нуля в виде кружочка мы находим в изображении числа 270 в настенной записи из Гвалиора, относящейся к 876г. Иногда ноль обозначался точкой. Неясно, был ли нуль собственным изобретением индийцев; возможно, они познакомились с ним по сочинениям александрийских астрономов.

Вот какова эволюция написания индийских цифр.

§2. Символика Виета и Декарта и развитие алгебры.

2.1 Развитие алгебры до Ф. Виета.

2.1.1 Алгебра греков.

Считается, что эллины заимствовали первые сведения по геометрии у египтян, по алгебре - у вавилонян.

В древнейших египетских источниках папирусе Райнда и Московском папирусе - находим задачи на «аха» (термин «аха» означает «куча», «груда»). Имеется в виду некоторое количество, неизвестная величина, подлежащая определению) соответствующие современным линейным уравнениям, а также квадратным вида ах2 = b. В вавилонских клинописных текстах имеется большое число задач, решаемых с помощью уравнений и систем первой и второй степеней, которые записаны без символов, но в специфической терминологии. В этих текстах решаются задачи, приводящие к трехчленным квадратным уравнениям вида ах2 - bх = с или х2 - рх = q. В задачах на «аха» можно обнаружить зачатки алгебры как науки о решении уравнений.

Но если вавилоняне за два тысячелетия до нашей эры умели числовым путем решать задачи, связанные с уравнениями первой и второй степеней, то развитие алгебры в трудах Евклида (365 - ок. 300 гг. до н. э.), Архимеда (287-212 гг. до н. э.) и Аполлония (ок. 260-170 гг. до н. э.) носило совершенно иной характер: греки оперировали отрезками, площадями, объемами, а не числами. Их алгебра строилась на основе геометрии и выросла из проблем геометрии. В XIX в. совокупность приемов древних получила название геометрической алгебры.

В качестве примера геометрической алгебры греков рассмотрим решение уравнения х2 + ax = b2.

Античные математики решали эту задачу построением и строили искомый отрезок так, как показано на рисунке.

На заданном отрезке АВ (равном a) строили прямоугольник AM со сторонами (а + х) и x, равновеликий данному квадрату (b2), таким образом, чтобы избыточная над прямоугольником AL (равная ах) площадь ВМ была квадратом, по площади равным х2. Сторона этого квадрата и давала искомую величину х. Такое построение называли гиперболическим приложением площади.

Далее, полагая задачу решенной, делили АВ пополам точкой С, на отрезке LM строили прямоугольник MG, равный прямоугольнику ЕС. Тогда прямоугольник AM будет разностью квадратов DF и LF. Эта разность и квадрат LF известны, поэтому по теореме Пифагора можно получить квадрат DF. После этого находили величину DC (равную ½a + x) и DB (равную х).

Геометрическое построение в точности соответствует преобразованию, с помощью которого в современных обозначениях решается уравнение указанного типа:

b2 = ax + х2 =

Конечно же, при таких построениях отыскивались только положительные корни уравнений: отрицательные числа появились в математике значительно позже.

С помощью геометрии древним удавалось также доказывать многие алгебраические тождества. Но каковы эти доказательства! Они безупречны в отношении логики и слишком громоздки. Вот как формулирует Евклид теорему, выражающую тождество (а + b)2 = a2 + 2аb + b2. Если отрезок () разделен в точке () на два отрезка, то квадрат, построенный на (), равен двум квадратам на отрезках (, ) вместе с удвоенным прямоугольником на (, ).

Естественно, связывая число с геометрическим образом (линией, поверхностью, телом), древние оперировали только однородными величинами; так, равенство было возможно для величин одинакового измерения.

Такое построение математики позволило античным ученым достигнуть существенных результатов в обосновании теорем и правил алгебры, но в дальнейшем оно стало сковывать развитие науки.

Приведенные примеры могут создать ощущение, что математика древних греков примитивна. Но это не так: созданная ими математика по своему идейному содержанию глубока и питала идеями и методами математику вплоть до XVII в. - века научной революции; многие идеи древних получили дальнейшее развитие в новой математике, созданной усилиями выдающихся умов XVI—XVII вв.

Накопленные в странах Древнего Востока знания состояли из набора разрозненных математических фактов, рецептур для решения некоторых конкретных задач и не могли обладать достаточной строгостью и достоверностью. Создание основ математики в том виде, к которому мы привыкли при изучении этой науки в школе, выпало на долю греков и относится к VI—V вв. до н. э. С этого времени начала развиваться дедуктивная математика, построенная на строгих логических доказательствах.

2.1.2 Алгебра Диофанта.

Новый подъем античной математики относится к III в. н. э., он связан с творчеством великого математика Диофанта. Диофант возродил и развил числовую алгебру вавилонян, освободив ее от геометрических построений, которыми пользовались греки.

У Диофанта впервые появляется буквенная символика. Он ввел обозначения: неизвестной , квадрата ), куба , четвертой (квадратоквадрат), пятой (квадратокуб) и шестой степеней ее, а также первых шести отрицательных степеней, т. е. рассматривал, величины, записываемые нами в виде x6, x5, x4, x3, x2, x, x-1, x-2, x-3, x-4, x-5, x-6. Диофант применял знак равенства (символ ) и знак для обозначения вычитания.

Диофант сформулировал правила алгебраических опeраций со степенями неизвестной, соответствующие нашим умножению и делению степеней с натуральными показателями (для m + n 6), и правила знаков при умножении. Это дало возможность компактно записывать многочлены, производить умножение их, оперировать с уравнениями. Он указал также правила переноса отрицательных членов уравнения в другую часть его с обратными заиками, взаимного уничтожения одинаковых членов в обеих частях уравнения.

«Арифметика» посвящена проблеме решения неопределенных уравнений. И хотя Диофант считает число собранием (а это означает, что рассматриваются только натуральные числа), при решении неопределенных уравнений он не ограничивается натуральными числами, а отыскивает и положительные рациональные решения.

Неопределенными уравнениями до Диофанта занимались математики школы Пифагора в связи с пифагоровой теоремой. Они искали тройки целых положительных чисел, удовлетворяющих уравнению x2 + y2 = z2.

Диофант поставил задачу установить разрешимость (в рациональных числах) и в случае разрешимости найти рациональные решения уравнения F (х, у) = 0, где левая часть – многочлен с целыми или рациональными коэффициентами. Он исследовал неопределенные уравнения второй, третьей и четвертой степеней и системы неопределенных уравнений.

Во второй книге «Арифметики» он так исследует, например, уравнение второго порядка F (х, у) = 0.

Это уравнение задает коническое сечение. Всякому рациональному решению уравнения соответствует точка кривой с рациональными координатами. Пусть a, b – такие координаты, т. е. F (a, b) = 0.

Диофант делает подстановку у = b + k (х – а), или y = b + kt, х = а + t.

Тогда F (а + t, b + kt) = F (a, b) + tA (а, b) + ktB (а, b) + t2C (a, b, k) = 0.

Но F (a, b) = 0, поэтому t = – .

Это означает, что каждому рациональному значению параметра k соответствует рациональное же значение t, а значит, рациональная точка кривой. Очевиден геометрический смысл решения: через рациональную точку кривой (a, b) проводится прямая y – b =k (x – a) и находятся вторая точка ее пересечения с кривой.

Методы Диофанта впоследствии применяли и развивали арабские ученые, Виет (1540—1603), Ферма, Эйлер (1707—1783), Якоби (1804—1851), Пуанкаре (1854—1912).

Оценивая творчество Диофанта, Цейтен отмечает существенную деталь: «Наконец, мы желаем здесь вкратце указать на важную роль, сыгранную впоследствии сочинениями Диофанта. Благодаря тому, что определенные уравнения первой и второй степени были облечены у него в численную оболочку они оказались гораздо более доступными для людей, не посвященных еще в культуру греческой математики; более доступными, чем те абстрактные геометрические формы, которые принимают у Евклида уравнения второй степени и которые мы встречаем в сохранившихся до нас трудах других геометров для выражения уравнений первых двух степеней. Поэтому Диофант и явился главным посредником в процессе усвоения греческой алгебры арабами, благодаря которым, в свою очередь она проникла в Европу в эпоху возрождения наук».

2.1.3 Алгебра индусов.

Начиная с V в. центр математической культуры переместился на восток - к индусам и арабам. Математика индусов резко отличалась от математики греков она была числовой. Индусы не были озабочены строгостью эллинов в доказательствах и обосновании геометрии. Они довольствовались чертежами, на которых у греков основывалось доказательство, сопровождая их указанием: «Смотри!». Предполагается, что благодаря числовым выкладкам и практическому эмпиризму индусам удалось постичь теоремы и методы греков, теоретического обоснования которых они, возможно, по-настоящему не понимали.

Основные достижения индусов состоят в том, что они ввели в обращение цифры, называемые нами арабскими, и позиционную систему записи чисел, обнаружили двойственность корней квадратного уравнения, двузначность квадратного корня и ввели отрицательные числа.

Индусы рассматривали числа безотносительно к геометрии. В этом их алгебра имеет сходство с алгеброй Диофанта. Они распространили правила действия над рациональными числами на числа иррациональные, производя над ними непосредственные выкладки, а не прибегая к построениям, как это делали греки. Например, им было известно, что

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее