64081 (Разработка систем передачи информации нового поколения), страница 9

2016-07-29СтудИзба

Описание файла

Документ из архива "Разработка систем передачи информации нового поколения", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "64081"

Текст 9 страницы из документа "64081"

Это модель оптического приемника и всех его стандартных составляющих. Данная модель преобразует входной оптический сигнал в электрический сигнал, который затем усиливает и фильтрует, а также вычисляет шум в сигнале. Рассмотрим различные части этой модели приемника.

Параметры приёмника, определяемые пользователем:

Pd_deviceCapacitance Емкость элемента = 50*10-15 Ф;

Pd_layerThickness Толщина Активной Области = 0.5*10-6 м;

Pd_absorptionCoeff Коэффициент поглощения = 0.68*106 1/м;

Pd_reflectivity Отражающая способность в фотодиоде = 0.04;

Pd_quantumEff Квантовая эффективность (КПД) = 0.8

Pd_lossGain Усиление или потери реакции фотодетектора = 0 дБ;

Pd_darkCurrent Темновой ток = 1*10-6 A

Flt_bandwidth Фильтр 3dB ширины диапазона = 10*109 Гц;

Flt_lossGain Усиление фильтра или потери = -3 дБ

Тестер передачи ошибочных битов

Эта модель вычисляет вероятность передачи ошибочных битов (BER) для входного электрический сигнала. Метод вычисления заключается в синхронизации входного электрического сигнала с соответствующим ему первоначальным двоичным сигналом, генерации данных глаза и получении вероятности передачи ошибочных битов. При этом блок BER имеет минимум два входа, на один из которых подаётся электрический сигнал от приемника, а на другой - соответствующий ему двоичный сигнал. Полученные данные могут буть сохранены в файле.

Чтобы улучшить точность вычислений BER, первый бит и последние три бита каждого входного сигнала игнорируются. Это делается для того, чтобы исключить определенные нефизические погрешности, которые могут присутствовать в этих разрядных периодах и которые привели бы к неправильным оценкам BER.

Параметры BER тестора определяемое пользователем:

TimingJitter Выбор времени принятия решения = 0 с;

DecisionLevelJitter Дрожание уровня принятия решений = 0В;

DecisionLevel Пороговое значение решения = 0В;

5.2 Результаты моделирования

В данном разделе представлены результаты моделирования нашей ВОЛС содержащей DWDM мультиплексор и EDFA усилитель.

На выходе источника излучения (CW лазера) мощность сигнала составляет 1мВт (0дбм). На выходе модулятора мощность сигнала составляет 3*10-4Вт, что соответствует ослаблению сигнала на 5дб. На выходе из модуляторов сигналы подаются на оптический мультиплексор, который «сшивает» их в единый сигнал (рис 5.2 глаз-диаграмма (а) и спектрограмма (б)). На спектрограмме видно, что разнос частот между каналами составляет 100 ГГц, каналы расположены в соответствии со стандартным канальным планом.

На выходе мультиплексора мощность сигнала составляет

8*10-5 Вт, т.е. мощность сигнала после мультиплексора уменьшилась на 6 дбм, таким образом модулятор с мультиплексором вносят ощутимые помехи, порядка 11 дбм.

Чтобы компенсировать потерянную мощность сигнала, перед вводом в волокно сигнал усиливаем с помощью усилителя мощности, выполненного на основе EDFA (Erbium - Dopped Fiber Amplifier)

Как видно усилитель мощности усиливает сигнал до уровня 2,5 мВт (~4дбм), что соответствует коэффициенту усиления 16 дБ. По расчетным данным дисперсионная длина волокна LEAFТМ на скорости 2.5 Гбит/с с DWDM уплотнением равна ~1750 км (L = 10500пс*нм / 6 пс*нм/км), т.е. дисперсия не является ограничением для ВОЛС в 550 км. Но для прохождения этой дистанции сигналу не хватает мощности. При увеличении мощности излучения лазера или увеличении коэффициента усиления EDFA в оптическом волокне начинают проявляться нелинейные эффекты, не желательные в нашем случае из-за ухудшения сигнала. Проблему потери мощности импульсов можно решить, используя тот же самый оптический усилитель EDFA в качестве линейного усилителя.

Оптический усилитель EDFA является 1R-регенератором, т.е. он восстанавливает только одну характеристику – мощность. Но в то же время он усиливает и шум, поэтому после EDFA отношение сигнал-шум уменьшается. При каскадном включении EDFA шумы накапливаются (5.4,б, г), что может привести к увеличению BER.

а) на выходе после волокна (110 км),

б) после усиления на первом линейном усилителе,

в) на выходе после волокна (220 км),

г) после усиления на втором линейном усилителе,

Мощность сигнала на выходе волокна (110 км) составляет 4.4*10-6Вт

(-23.5 дбм). После усиления на первом линейном усилителе мощность сигнала составляет 1.6*10-3Вт (~2дбм). Мощность сигнала на выходе волокна (220 км) составляет 2.8*10-6Вт (-25.5 дбм). После усиления на втором линейном усилителе мощность сигнала составляет 11*10-4Вт (~0,4дбм).

д) на выходе после волокна (330 км)

е) после усиления на третьем линейном усилителе

ж) на выходе после волокна (440 км)

и) после усиления на четвертом линейном усилителе

Мощность сигнала на выходе волокна (330 км) составляет 1.9*10-6Вт

(-27.5 дбм). После усиления на третьем линейном усилителе мощность сигнала составляет 7.5*10-4Вт (~-1.3дбм). Мощность сигнала на выходе волокна (440 км) составляет 1.3*10-6Вт (-28.8 дбм). После усиления на четвервом линейном усилителе мощность сигнала составляет 5*10-4Вт (~-3дбм).

Произведем оценку отношения сигнал/шум (S/N).

На выходе УМ мощность сигнала составляет – 5дбм. УМ и ПУ низкочувствительны к шумам, мощность шума на выходе УМ составляет

~-30дбм. Отсюда находим отношение сигнал/шум составляет ~ S/N = 5 - (-30) = 35дбм. ЛУ чувствителен к уровню шума и после каждого усиления отношение сигнал/шум уменьшается на 4дбм. После четвертого ЛУ отношение сигнал шум составляет S/N = 35 -16 = 19 дбм. Основная функция ПУ обеспечить требуемую мощность, и требуемое отношение сигнал/шум на входе приемника. Для стандарта STM-16 минимальное отношение сигнал/шум составляет - 18-21дб. Таким образом для ПУ достаточно оставить отношение сигнал/шум на прежнем уровне, обеспечив при этом требуемый уровень мощности сигнала на входе в приемник.

На рисунке 5.5 представлены спектр-диаграммы сигнала после прохождения 330 км и 550 км соответственно. Разнос между каналами составляет 100 ГГц что соответствует стандартному канальному плану. Из спектр-диаграммы видно, что спектр сигнала значительно сузился и по мере прохождения секции и потеря мощности сигнала составила порядка 27 дбм.

В нашем случае длина оптического волокна между линейными оптическими усилителями была выбрана равной 110 км. Это означает, что на всей длине регенерационного участка достаточно установить 1 усилитель мощности, 4 линейных усилителя и 1 предусилитель, что соответствует длине регенерационного участка 550 км. Это значение не превышает теоретическое значение длины регенерационного участка (~1700 км). На этом расстоянии BER = 2*10-14. Заданием данной работы было обеспечить BER=10-13 на расстоянии 550 км.

Рассмотрим сигналы, поступающие на вход 3R-регенераторов, а также на приемник.

Мощность сигнала на выходе оптического волокна (рис 5.7,а) составляет 9*10-7Вт (-30.4 дбм). Затем сигнал подается в предусилитель где усиливается на 30 дБ и подается на демультиплексор. В блоке демультиплексора единый световой поток разделяется на составляющие, т.е. на каждом выходе DEMUX выделяется своя длина волны. DEMUX тоже вносит свой вклад в ослабление сигнала порядка 6дб.(рис 5.7.б).

Рисунок 5.7 Глаз-диаграмма сигналов: а) на выходе волокна (550 км); б) на выходе демультиплексора (один из каналов).

После демультиплексирования (перед вводом излучения в приемник) мощность сигнала составляет 1.3*10-4Вт (-8.8 дбм) (рис 5.7). Чувствительность приемного оборудования для интерфейса STM16 составляет ~ -10 – -20дбм.Таким образом мы обеспечили необходимую для правильного детектирования мощность сигнала. Мощность детектированного сигнала составляет ~5*10-2Вт ~50мВт.

Произведем сравнение формы сигналов до входа в MUX и после выхода из DEMUX (рис 5.8). Полученный сигнал практически идентичен переданному сигналу, кроме, конечно, уровня мощности. Также заметны шумы, накопившиеся во время передачи по оптическому каналу, которые, в принципе не мешают нам детектировать принятый сигнал.

а)

б)

Рисунок 5.8 Осциллограммы сигналов: а) до входа в мультиплексор; б) после выхода из демультиплексора.

Детектирование принятого сигнала происходит в приемнике, который сам тоже является источником шума (рис 5.9).

Из рис 5.9 видно, что уровень вносимых потерь со стороны приемника ощутимый. Поэтому для уверенного детектирования нужен запас по фазе и амплитуде. Запас по фазе составляет 4*10-10, запас по амплитуде составляет 4.5*10-2Вт.

Как видим, для протяженной (магистральной) ВОЛС, налагаются жесткие требования как к интерфейсному оборудованию так и волокну. Для проектируемой ВОЛС основным ограничением является мощность. Исследуем зависимость коэффициента ошибок (BER) от затухания в оптическом волокне BERf (loss); от коэффициента усиления в линейном усилителе BERf (Gain); от скорости передачи BERf (bitrate).

Рисунок 5.10 График зависимости BERf (loss).

Как видим из рисунка 5.10 к оптическому волокну предьявляются жесткие требования по затуханию, так уже при б = 0,30 дб/км для магистральной ВОЛС(550км) и при скорости передачи 2,5Гбит/с, BER→ 0, что совершенно неприемлемо. Требованиям для данных типов систем отвечают NZDSF волокна, имеющие в третьем окне прозрачности затухание порядка 0,20- 0,25 дб/км. При проектировании ВОЛС я использовал одномодовое NZDSF волокно – LEAFТМ.

Как видно из рисунка 5.11 очень важно правильно подобрать коэффициент усиления линейного усилителя, поскольку при малом коэффициенте усиления неприемлемым становится значение BER, а при большом коэффициенте усиления, из-за возникновения нелинейных эффектов, уменьшается отношение сигнал/шум. При моделировании ВОЛС я использовал коэффициент усиления G = 26 дб.

Рисунок 5.12 График зависимости BERf (Bitrate).

Из рисунка 5.12 видим, что при увеличении скорости передачи значение BER снижается. Это говорит о том , что для более высокоскоростных систем налагаются еще более жесткие требования к интерфейсному оборудованию. Число используемых линейных усилителей сокращается до 2-3, минимальное отношении сигнал/шум должно составлять не менее 29-31 дб.

Проведенное исследование показало возможность построении 8-ми канальной ВОЛС с волновым мультиплексированием и демультиплексированием на длине оптической линии 550 км и скорости передачи 2.5Гбит/с без оптоэлекронного преобразования сигнала. Уровень мощности сигнала в моделируемой линии составил - -8.8дбм, отношение сигнал сигнал/шум -19дб, что приемлемо для проектируемой ВОЛС.

6. Подбор промышленного оборудования для проектируемой ВОЛС

6.1 Характеристики промышленных мультиплексоров WDM

- Тип системы - дуплексные, или двунаправленные, (D), используют две оптические несущие на канал, и полудуплексные, или однонаправленные, (S), используют одну оптическую несущую на канал.

- Код - как правило широко используются два типа линейного кодирования: NRZ и RZ. Первый позволяет реализовать большую плотность эквивалентных бит на секундный интервал и более предпочтителен в системах SDH верхних уровней иерархии. Второй - широко используется в системах DWDM в силу специфики работы модуляторов. Интересно отметить, что система WL4 компании Siemens использует мультиплексор SDH типа SMA256, работающий на скорости 40 Гбит/с и реализованный на электронных компонентах (используется электронная система мультиплексирования ETDM, а не оптическая - OTDM), что позволяет добиться высокой общей емкости системы (160 Гбит/с) уже при 4-х каналах. Наличие такого мультиплексора позволяет надеятся, что в недалеком будущем может бвть реализована система WL32 общей емкостью потока через одно волокно 1,28 Тбит/с, если будут преодолены трудности с перекрытием оптических импульсов при таком сочетании высокой плотности каналов (разнос 100 ГГц) и высокой скорости потока в канале - 40 Гбит/с

- Число каналов ввода-вывода - реализовать оптический ввод/вывод трибов, участвующих в схеме первичного (электрического - ETDM или оптического OTDM) мультиплексирования SDH (опция drop/insert) в оптический канал (представленный отдельной оптической несущей) или из него в схеме вторичного оптического мультиплексирования WDM, достаточно сложно. Поэтому ряд систем WDM вообще не реализует эту опцию, обеспечивая лишь работу в режиме точка-точка (т-т), либо ограничивает число каналов, не которых эта опция может быть реализована (например, 4 из 16, 8 из 40, 12 из 64).

- Топология - в порядке сложности в системах WDM могут быть реализованы топологии: точка-точка (т-т) без возможности оптического ввода/вывода трибов SDH; последовательная линейная цепь (л) с возможностью ввода/вывода трибов SDH; звезда (з) или точка-много точек (т-мт), реализуемые с помощью концентратора; кольцо, которое может быть представлено в трех видах:

одинарное кольцо без защиты (к), двойное кольцо с защитой (к2), счетверенное кольцо с полно-дуплексной защитой (к4); ячеистая сеть (я) с возможностью динамической маршрутизации.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее