63973 (Проектирование беспроводной сети Wi-Fi), страница 3

2016-07-29СтудИзба

Описание файла

Документ из архива "Проектирование беспроводной сети Wi-Fi", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "63973"

Текст 3 страницы из документа "63973"

По этой причине при высоких скоростях передачи применяется метод кодирования данных, называемый ортогональным частотным разделением каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Суть его заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех таких подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, тогда как скорость передачи в отдельном подканале может быть и невысокой.

Благодаря тому что в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, создаются предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы отдельный канал был достаточно узким для минимизации искажения сигнала, но в то же время — достаточно широким для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно расположить частотные подканалы как можно ближе друг к другу, но при этом избежать межканальной интерференции, чтобы обеспечить их полную независимость. Частотные каналы, удовлетворяющие вышеперечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов ортогональны друг другу. Важно, что ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, и отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на n-каналов сигнал из временного представления в частотное.

Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Конечно, сама по себе технология OFDM не исключает многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) — циклическое повторение окончания символа, пристраиваемое в начале символа.

Охранный интервал создает паузы между отдельными символами, и если его длительность превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом символ имеет длительность 3,2 мкс, а охранный интервал — 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

В протоколе 802.11g на низких скоростях передачи применяется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит, а при QPSK-модуляции — два информационных бита. Модуляция BPSK применяется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK — на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой информация кодируется за счет изменения фазы и амплитуды сигнала. В протоколе 802.11g применяется модуляция 16-QAM и 64-QAM. Первая модуляция предполагает 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе; вторая — 64 возможных состояния сигнала, что дает возможность закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM используется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM — на скоростях 48 и 54 Мбит/с.

1.3.2 Стандарт IEEE 802.11а

Стандарт IEEE 802.11а предусматривает скорость передачи данных до 54 Мбит/с. В отличие от базового стандарта спецификациями 802.11а предусмотрена работа в новом частотном диапазоне 5ГГц. В качестве метода модуляции сигнала выбрано ортогонально частотное мультиплексирование (OFDM), обеспечивающее высокую устойчивость связи в условиях многолучевого распространения сигнала.

В соответствии с правилами FCC частотный диапазон UNII разбит на три 100-мегагерцевых поддиапазона, различающихся ограничениями по максимальной мощности излучения. Низший диапазон (от 5,15 до 5,25 ГГц) предусматривает мощность всего 50 мВт, средний (от 5,25 до 5,35 ГГц) — 250 мВт, а верхний (от 5,725 до 5,825 ГГц) — 1 Вт. Использование трех частотных поддиапазонов с общей шириной 300 МГц делает стандарт IEEE 802.11а самым широкополосным из семейства стандартов 802.11 и позволяет разбить весь частотный диапазон на 12 каналов, каждый из которых имеет ширину 20 МГц, причем восемь из них лежат в 200-мегагерцевом диапазоне от 5,15 до 5,35 ГГц, а остальные четыре канала — в 100-мегагерцевом диапазоне от 5,725 до 5,825 ГГц (рисунок 1.3). При этом четыре верхних частотных канала, предусматривающие наибольшую мощность передачи, используются преимущественно для передачи сигналов вне помещений.

Рисунок 1.3 - Разделение диапазона UNII на 12 частотных поддиапазонов

Стандарт IEEE 802.11a основан на технике частотного ортогонального разделения каналов с мультиплексированием (OFDM). Для разделения каналов применяется обратное преобразование Фурье с окном в 64 частотных подканала. Поскольку ширина каждого из 12 каналов, определяемых в стандарте 802.11а, имеет значение 20 МГц, получается, что каждый ортогональный частотный подканал (поднесущая) имеет ширину 312,5 кГц. Однако из 64 ортогональных подканалов задействуется только 52, причем 48 из них применяются для передачи данных (Data Tones), а остальные — для передачи служебной информации (Pilot Тones).

По технике модуляции протокол 802.11a мало чем отличается от 802.11g. На низких скоростях передачи для модуляции поднесущих частот используется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При применении BPSK-модуляции в одном символе кодируется только один информационный бит. Соответственно при использовании QPSK-модуляции, то есть когда фаза сигнала может принимать четыре различных значения, в одном символе кодируются два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK — на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях в стандарте IEEE 802.11а используется квадратурная амплитудная модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе, а во втором — уже 64 возможных состояния сигнала, что позволяет закодировать последовательность из 6 битов в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM — на скоростях 48 и 54 Мбит/с.

Информационная емкость OFDM-символа определяется типом модуляции и числом поднесущих. Поскольку для передачи данных применяются 48 поднесущих, емкость OFDM-символа составляет 48 x Nb, где Nb — двоичный логарифм от числа позиций модуляции, или, проще говоря, количество бит, которые кодируются в одном символе в одном подканале. Соответственно емкость OFDM-символа составляет от 48 до 288 бит.

Последовательность обработки входных данных (битов) в стандарте IEEE 802.11а выглядит следующим образом. Первоначально входной поток данных подвергается стандартной операции скрэмблирования. После этого поток данных поступает на сверточный кодер. Скорость сверточного кодирования (в сочетании с пунктурным кодированием) может составлять 1/2, 2/3 или 3/4. Поскольку скорость сверточного кодирования может быть разной, то при использовании одного и того же типа модуляции скорость передачи данных оказывается различной. Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Длительность одного символа вместе с охранным интервалом равна 4 мкс, а значит, частота следования импульсов составит 250 кГц. Учитывая, что в каждом подканале кодируется по одному биту, а всего таких подканалов 48, получаем, что общая скорость передачи данных составит 250 кГц x 48 каналов = 12 МГц. Если при этом скорость сверточного кодирования равна 1/2 (на каждый информационный бит добавляется один служебный), информационная скорость окажется вдвое меньше полной скорости, то есть 6 Мбит/с. При скорости сверточного кодирования 3/4 на каждые три информационных бита добавляется один служебный, поэтому в данном случае полезная (информационная) скорость составляет 3/4 от полной скорости, то есть 9 Мбит/с. Аналогичным образом каждому типу модуляции соответствуют две различные скорости передачи (таблица 1.2).

Таблица 1.2 - Соотношение между скоростями передачи и типом модуляции в стандарте 802.11a

Скорость передачи, Мбит/с

Тип модуляции

Скорость сверточного кодирования

Количество бит
в одном символе в одном подканале

Общее количество бит в символе (48 подканало)

Количество информационных бит в символе

6

BPSK

1/2

1

48

24

9

BPSK

3/4

1

48

36

12

QPSK

1/2

2

96

48

18

QPSK

3/4

2

96

72

24

16-QAM

1/2

4

192

96

36

16-QAM

3/4

4

192

144

48

64-QAM

2/3

6

288

192

54

64-QAM

3/4

6

288

216

После сверточного кодирования поток бит подвергается операции перемежения, или интерливинга. Суть ее заключается в изменении порядка следования бит в пределах одного OFDM-символа. Для этого последовательность входных бит разбивается на блоки, длина которых равна числу бит в OFDM-символе (NCBPS). Далее по определенному алгоритму производится двухэтапная перестановка бит в каждом блоке. На первом этапе биты переставляются таким образом, чтобы смежные биты при передаче OFDM-символа передавались на несмежных поднесущих. Алгоритм перестановки бит на этом этапе эквивалентен следующей процедуре. Первоначально блок бит длиной NCBPS построчно (строка за строкой) записывается в матрицу, содержащую 16 строк и NCBPS/16 рядов. Далее биты считываются из этой матрицы, но уже по рядам (или так же, как записывались, но из транспонированной матрицы). В результате такой операции первоначально соседние биты будут передаваться на несмежных поднесущих.

Затем следует этап второй перестановки битов, цель которого заключается в том, чтобы соседние биты не оказались одновременно в младших разрядах групп, определяющих модуляционный символ в сигнальном созвездии. То есть после второго этапа перестановки соседние биты оказываются попеременно в старших и младших разрядах групп. Делается это с целью улучшения помехоустойчивости передаваемого сигнала.

После перемежения последовательность бит разбивается на группы по числу позиций выбранного типа модуляции и формируются OFDM-символы.

Сформированные OFDM-символы подвергаются быстрому преобразованию Фурье, в результате чего формируются выходные синфазный и квадратурный сигналы, которые затем подвергаются стандартной обработке — модуляции.


1.3.3 Стандарт IEEE 802.11n

Этот стандарт был утверждён 11 сентября 2009. 802.11n по скорости передачи сравнима с проводными стандартами. Максимальная скорость передачи стандарта 802.11n примерно в 5 раз превышает производительность классического Wi-Fi.

Можно отметить следующие основные преимущества стандарта 802.11n:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее