62276 (Волновая резонансная теория), страница 5

2016-07-29СтудИзба

Описание файла

Документ из архива "Волновая резонансная теория", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "62276"

Текст 5 страницы из документа "62276"

Осцилляторная активность нейрона определяется тем, что это неравновесная система с разнообразными обратными связями, в том числе и запаздывающими. Именно благодаря этим обратным связям, закрывающим или открывающим ионные каналы в соответствующей фазе электрической активности мембраны, состояние нейрона, отвечающее потенциалу покоя, может стать неустойчивым, и он превращается в генератор. Такой генератор можно рассматривать как динамическую систему, в рамках которой микроскопическая кинетика проявляется лишь как малые флуктуации.

Нелинейные динамические модели нейронов, которые строятся для объяснения обнаруживаемых феноменов и предсказания новых (в чем, собственно, и состоит назначение теории), в значительной степени зависят от того нейрофизиологического эксперимента, на который они опираются. Так, для описания нейронов ЦГ обычно используются варианты классической модели Ходжкина-Хаксли (1952 г.), включая ее разнообразные обобщения, учитывающие дополнительные мембранные токи, или, наоборот, более упрощенные, использующие в качестве переменных мембранный потенциал V(t) и некоторые вспомогательные токи, описывающие процессы двух типов быстрые Ie(t) и медленные IM(t) (см., например, [13-15]).

Типичная обобщенная модель Ходжкина-Хаксли (в широком смысле conductance-based model) имеет вид

где V(t) — электрический потенциал клеточной мембраны, С характеризует электрическую емкость мембраны, i обозначает вид тока, текущего через мембрану, или, как говорят, тип ионного канала (калиевого, натриевого, кальциевого канала, канала утечки), gi — максимальная проводимость, Vi — равновесный потенциал (потенциал реверсии) для i-го канала, ai и bi — переменные, характеризующие активацию и инактивацию i-го канала, эти переменные можно рассматривать, например, как вероятности открытия или закрытия того или иного канала, a pi и qi представляют собой число управляющих частиц, достаточное, чтобы открыть или закрыть канал (обычно это целые числа от нуля до четырех). ai (V) и bi(V) — стационарные состояния уровня активации и инактивации, они зависят от V сигмоидным образом, так же как и характерные времена релаксации фai(V) и фai(V). В классической работе Ходжкина и Хаксли [14] N = 3.

Сейчас популярны и более простые модели подобного типа. Одна из них — модель Морриса-Лекара [15]:

где m(V), W(V), ф(V) — функции сигмоидного типа. Здесь учтена всего лишь одна переменная W, описывающая активацию нейрона. Естественно, что в рамках динамической модели с двумерным фазовым пространством невозможно описать все детали динамики нейрона и, в первую очередь, хаотические колебания мембранного потенциала клетки, наблюдаемые в различных экспериментах [16, 17] (поскольку странный аттрактор не может быть вложен в двумерное пространство). Поэтому сейчас весьма широко используются трехмерные модели, также опирающиеся на формализм Ходжкина-Хаксли. Это, например, модель Чэй [18] и др.

Формализм Ходжкина и Хаксли, основанный на детальном анализе ионного транспорта через мембрану, получил широкое распространение. Но весьма продуктивны и феноменологические модели, описывающие основные особенности динамики нейронов. Одна из моделей такого типа — модель Розе-Хиндмарш [19] (более подробно см. раздел 3):

где х – мембранный потенциал, у характеризует "быстрые" токи (например, калиевые и натриевые), а z "медленные" токи, I внешний ток, а, Ь, с, d, r, s, х0 постоянные параметры.

При обсуждении динамических процессов в коре головного мозга наиболее часто используется модель нейронной активности Вилсона и Кована (1972 г.), учитывающая взаимодействие двух связанных популяций нейронов подавляющих и возбуждающих [20]:

где Е и I – безразмерные величины, характеризующие активность возбуждающих и тормозящих нейронов соответственно. Здесь параметр е < 1, поскольку постоянные времени для торможения, как правило, больше характерных времен возбуждения, F функция сигмоидного типа: F=l/(l+e-x) или F= 1/2 + (1/р) arctanx.

При моделировании больших ансамблей нейронов часто используют и совсем простые точечные модели в виде фазовых осцилляторов, к которым сводятся системы осцилляторов общего вида с периодическим поведением и слабыми парными связями (см., например, [21], обзор [22]):

или еще более простые модели переключательного, спинового, типа, подобные тем, которые широко применяются в теории фазовых переходов.

Описанные выше модели нейронов дублируют именно физиологические и анатомические особенности отдельного нейрона. Но при создании нейронной сети нет необходимости в таком точном воспроизведении естественного нейрона. Необходим нейрон, удовлетворяющий поставленным требованиям, и не усложненный реализацией лишних в рамках поставленной задачи физиологических особенностей, так как это будет негативно отражаться на быстродействии сети. Необходима упрощенная, но подходящая для поставленной задачи распознавания модель.

В поставленной задаче необходим пороговый, импульсный нейрон, удовлетворяющий требованию пластичности и стабильности. Для решения этой задачи я взяла двухпороговый нейрон (рис. 15).

Рис.15. Двухпороговый нейрон.

При прохождении входным сигналом нижнего порога, и не превышении верхнего, нейрон срабатывает и генерирует импульс.

После обучения нейронного ансамбля, он будет узнавать только сигнал, мало отличающийся от запомненного. Т.е. ансамбль будет генерировать положительный импульс только в случае резонанса входного сигнала и сигнала, которому обучен ансамбль (рис. 16).

Рис.16. Резонанс.

    1. 2.6 Результат работы

      1. 2.6.1 Реализация ВРТ в среде Matlab с использованием пакета Simulink

    1. Заключение

Архитектура ВРТ сконструированы по принципу биологического подобия; это означает, что ее механизмы во многом соответствуют механизмам мозга (как мы их понимаем). Однако они могут оказаться не в состоянии моделировать распределенную память, которую многие рассматривают как важную характеристику функций мозга. Экземпляры ВРТ представляют собой «бабушкины узелки»; потеря одного узла разрушает всю память. Память мозга, напротив, распределена по веществу мозга, запомненные образы могут часто пережить значительные физические повреждения мозга без полной их потери.

Кажется логичным изучение архитектур, соответствующих нашему пониманию организации и функций мозга. Человеческий мозг представляет существующее доказательство того факта, что решение проблемы распознавания образов возможно. Кажется разумным эмулировать работу мозга, если мы хотим повторить его работу. Однако контраргументом является история полетов; человек не смог оторваться от земли до тех пор, пока не перестал имитировать движения крыльев и полет птиц.

    1. Список использованных источников:

http://www.ibusiness.ru

http://www.narcom.ru


3. Экономическая часть

В дипломном проекте разрабатывается программа – волновая резонансная нейронная сеть, которая является частью программного обеспечения интеллектуального робота.

Данный раздел дипломного проекта посвящен решению следующих задач:

  1. разработка плана создания программы;

  2. определение затрат на разработку программы и ее цены;

    1. 3.1. План разработки программы

Библиотека работ имеет следующий вид, приведенный в Таблице 1.

Таблица 1

Наименование этапа

Основные задачи и состав работ

Время выполнения

(в днях)

1. Разработка ТЗ

1) составление проекта ТЗ заказчиком;

20

2) проработка проекта ТЗ исполнителем;

10

3) согласование и утверждение ТЗ

10

2. Эскизное проектирование

1) изучение научно-технической информации;

10

2) выбор элементной базы разработки;

5

3) выбор основных программных решений

10

4) разработка структурных и функциональных схем программы;

10

3. Техническое проектирование

1) разработка принципиальных схем;

15

2) уточнение основных параметров программы по результатам прогнозирования;

5

3) уточнение основных параметров программы после изучения научно-технической информации;

5

4) программирование и отладка с учетом принципиальных схем

30

5) программирование и отладка с учетом основных параметров изделия

25

4. Тестирование программы

10

5. Проверка соответствия работы опытного образца требованиям ТЗ

5

6. Объединение с остальными частями интеллектуального робота

15

Библиотека событий приведена в таблице 2

Таблица 2

0. Начало работ

1. Проект ТЗ заказчика готов

2. проработка проекта ТЗ исполнителем завершена

3. Согласованное и утвержденное ТЗ

4 Изучение научно-технической информации завершено

5. Выбрана элементная базы разработки

6. Выбраны основные программные решения

7. Структурная и функциональная схема программы готовы

8. Принципиальные схемы разработаны

9. Основные параметры изделия уточнены

10. Готовое программное средство

11. Настройка и тестирование программы завершены

12. Проведена оценка соответствия ТЗ

13. Объединение с остальными частями интеллектуального робота успешно завершено

Для оценки временных и стоимостных параметров используем метод сетевого планирования и управления (СПУ). Основным плановым документом в системе СПУ является сетевой график (сетевая модель или сеть), представляющий собой информационно-динамическую модель, в которой отражаются взаимосвязи и результаты всех работ, необходимых для достижения конечной цели разработки. Сетевая модель изображается в виде сетевого графика (сети), состоящего из стрелок и кружков. Стрелками в сети изображаются отдельные работы, а кружками — события. Под стрелками указывается ожидаемое время выполнения работ. Жирной линией показан критический путь .

Сетевая модель комплекса приведена на рисунке 17.

3.3


2.1

3.5

10

5

25


1.1

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее