Векторный анализ (Векторный анализ (Кузнецов Л.А.))

2013-08-18СтудИзба

Описание файла

Файл "Векторный анализ" внутри архива находится в папке "20". Документ из архива "Векторный анализ (Кузнецов Л.А.)", который расположен в категории "". Всё это находится в предмете "математический анализ" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Онлайн просмотр документа "Векторный анализ"

Текст из документа "Векторный анализ"

§ 8.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

  1. Скалярное поле. Производная по направлению.

  2. Градиент, его свойства. Инвариантное определение градиента.

  3. Векторное поле. Поток векторного поля через поверх­ность, его физический смысл.

  4. Формула Остроградского.

  5. Дивергенция векторного поля, ее физический смысл. Инвариантное определение дивергенции. Свойства дивергенции.

  6. Соленоидальное поле, его основные свойства.

  7. Линейный интеграл в векторном поле, его свойства и фи­зический смысл.

  8. Циркуляция векторного поля, ее гидродинамический смысл.

  9. Формула Стокса.

  1. Ротор векторного поля, его свойства. Инвариантное опре­деление ротора.

  2. Условия независимости линейного интеграла от формы пути интегрирования.

  3. Потенциальное поле. Условия потенциальности.

§ 8.2. ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

  1. Найти производную скалярного поля по направлению градиента скалярного поля

  2. Найти градиент скалярного поля , где — по­стоянный вектор, а — радиус-вектор. Каковы поверхности уровня этого поля и как они расположены по отношению к век­тору ?

  3. Доказать, что если 5 — замкнутая кусочно-гладкая по­верхность и — ненулевой постоянный вектор, то

где —вектор, нормальный к поверхности .

  1. Доказать формулу

где ; — поверхность, ограничивающая объем ; — орт внешней нормали к поверхности . Установить условия применимости формулы.

  1. Доказать, что если функция удовлетворяет уравнению Лапласа

то

где — производная по направлению нормали к кусочно-гладкой замкнутой поверхности .

  1. Доказать, что если функция является многочле­ном второй степени и — кусочно-гладкая замкнутая поверх­ность, то интеграл пропорционален объему, ограни­ченному поверхностью .

  2. Пусть , где линей­ные функции от , и пусть — замкнутая кусоч­но-гладкая кривая, расположенная в некоторой плоскости. Доказать, что если циркуляция отлична от нуля,
    то она пропорциональна площади фигуры, ограниченной контуром .

  3. Твердое тело вращается с постоянной угловой скоростью вокруг неподвижной оси, проходящей через начало координат. Вектор угловой скорости . Определить ротор и дивергенцию поля линейных скоростей точек тела (здесь — радиус-вектор).

§ 8.3. РАСЧЕТНЫЕ ЗАДАНИЯ

Задача 1. Найти производную скалярного поля в точке по направлению проходящей через эту точку нормали к поверхности , образующей острый угол с положительным направлением оси .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Найти производную скалярного поля в точке по направлению вектора .

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 2. Найти угол между градиентами скалярных полей и в точке .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 3. Найти векторные линии в векторном поле .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 4. Найти поток векторного поля через часть поверхности , вырезаемую плоскостями (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Найти поток векторного поля через поверхности , вырезаемую плоскостью (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 5. Найти поток векторного поля a через часть плоскости , расположенную в первом октанте (нормаль образует острый угол с осью .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 6. Найти поток векторного поля через часть плоскости , расположенную в 1 октанте (нормаль образует острый угол с осью

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 7. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26

27.

28.

29.

30. .

31.

Задача 8. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 9. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 10. Найти работу силы при перемещении вдоль линии от точки к точке .

1. отрезок

2. отрезок

3.

4.

5.

6.

7. отрезок

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20. отрезок

21. отрезок

22.

23.

24.

25.

26. отрезок

27.

28.

29.

30.

31.

Задача 11. Найти циркуляцию векторного поля вдоль контура (в направлении, соответствующем возрастанию параметра

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 12. Найти модуль циркуляции векторного поля вдоль контура .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5310
Авторов
на СтудИзбе
415
Средний доход
с одного платного файла
Обучение Подробнее