150550 (Пассивные диэлектрики), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Пассивные диэлектрики", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150550"

Текст 2 страницы из документа "150550"

Щ е л о ч н ы е с т е к л а с в ы с о к и м с о д е р ж а н и е м т я ж е л ы х о к и с л о в (например, силикатно-свинцовые и бариевые) характеризуются высоким значением и малыми потерями даже при значительной добавке щелочных окислов.

Диэлектричекая проницаемость стекол увеличивается с повышением температуры.

По техническому назначению стекла можно подразделить на следующие основные типы:

электровакуумные, применяемые для изготовления баллонов, ножек и других деталей электровакуумных приборов. Температурные коэффициенты линейного расширения стекла и соединяемых с ним материалов должен быть приблизительно одинаков, чтобы при изменении температуры избежать растрескивания стекла, а также нарушения герметичности в месте ввода металлической проволоки в стекло. Для высокочастотных приборов используют стекла с низкими диэлектрическими потерями;

изоляторные стекла - используются в качестве герметизированных вводов в корпуса различных приборов;

лазерные стекла - используются в качестве рабочего тела в твердотельных лазерах;

стекловолокно - волокно, изготавливаемое из тонких стеклянных нитей (диаметром 4 - 7 мкм), обладает высокой нагревостойкостью, значительной механической прочностью и хорошими электроизоляционными свойствами;

световоды - это жгуты, скрученные из волокон, имеющих сердцевину и оболочку из стекол разного состава, с различными коэффициентами преломления, используемые для передачи света между источником и приемником излучения.

Бесщелочные стекла типов С41-1 (алюмосиликатное), С48-3 (боросиликатное) и плавленный кварц применяются для изготовления подложек тонкопленочных гибридных интегральных микросхем.

С и т а л л ы - это стеклокристаллические материалы, полученные путем кристаллизации стекол специально подобранного состава. Они занимают промежуточное положение между обычными стеклами и керамикой. В состав стекол, склонных к кристаллизации, вводят вещества, образующие зародыши кристаллизации. Этим стимулируется процесс кристаллизации стекла по всему объему. Размер кристаллов составляет 0.05 - 1 мкм.

Ситаллы отличаются от стекол своим кристаллическим строением, а от керамики - значительно меньшим размером кристаллических зерен.

Как правило, ситаллы обладают более высокими электроизоляционными свойствами (в частности более низким tg), чем аморфные стекла того же состава, а по сравнению с керамикой обладают более высокой электрической прочностью. Ситаллы отличаются повышенной механической прочностью (примерно в 10 раз прочнее прокатного стекла), высокой твердостью, высокой температурой размягчения (до 1350 С) и термостойкостью (300 - 700 С).

По техническому назначению ситаллы можно подразделить на установочные и конденсаторные. Установочные ситаллы широко используются в качестве подложек гибридных интегральных микросхем и дискретных пассивных элементов, деталей СВЧ. Достоинством ситалловых конденсаторов является повышенная электрическая прочность по сравнению с керамическими конденсаторами.

6. Керамика

Керамическими материалами называют неорганические материалы, изделия из которых получают путем обжига при высокой температуре.

В радиотехнике и радиоэлектронике используют керамику в качеcтве полупроводниковых, магнитных (ферриты), сегнето- и пьезоэлектрических материалов.

Преимуществом керамики является возможность получения заранее заданных характеристик путем изменения состава массы и технологии производства.

В общем случае керамический материал может состоять из нескольких фаз: кристаллической, стекловидной и газовой.

Кристаллическую фазу образуют различные химические соединения или твердые растворы этих соединений. Особенности кристаллической фазы во многом определяют диэлектрическую проницаемость, диэлектрические потери, температурный коэффициент линейного расширения, механическую прочность. Стекловидная фаза представляет собой прослойки стекла, связывающие кристаллическую фазу. Технологические свойства керамики: плотность, степень пористости гигроскопичность в основном определяется количеством стекловидной массы.

Наличие газовой фазы (газы в закрытых порах) обусловлено способом обработки массы и приводит к снижению механической и электрической прочности керамических изделий, а также вызывает диэлектрические потери при повышенных напряженностях поля вследствие ионизации газовых включений.

По сравнению с органическими электроизоляционными материалами керамика более стойка к действию высоких температур, воды и активных химических реактивов, негорюча, не имеет остаточных деформаций и не стареет при длительном воздействии электрической и тепловой нагрузок.

Изделия из керамики получают по специальной технологии. Исходные компоненты очищаются от примесей, тщательно измельчаются, перемешиваются в однородную массу (шихту). Из полученной массы различными способами - обточкой, прессовкой, отливкой в формы, выдавливанием через отверстие - получают изделия нужной конфигурации. Отформованные изделия сушат, и затем обжигают (при температуре 1300 - 1400С). Необходимые эксплуатационные свойства изделию придаются на завершающей стадии их изготовления - при обжиге смеси, отдельные компоненты которой не обладают нужными свойствами.

Керамические материалы, относящиеся к диэлектрикам, по техническому назначению можно подразделить на установочные и конденсаторные.

Установочную керамику применяют для изготовления разного рода материалов и конструкционных деталей: изоляторов радиоустройств, подложек интегральных микросхем, ламповых панелей, корпусов резисторов, каркасов катушек индуктивности и др.

По электрическим свойствам установочную и конденсаторную керамику подразделяют на низкочастотную и высокочастотную. Из низкочастотных установочных материалов наиболее распространен изоляторный фарфор. Сырьем для его изготовления служат специальные сорта глины, кварцевый песок и щелочной полевой шлак. Наличие большого содержания щелочных окислов в стеклофазе определяет сравнительно высокие диэлектрические потери (tg 10-2), которые быстро увеличиваются с повышением температуры. Это затрудняет применение фарфора на высоких частотах.

Меньшими диэлектрическими потерями обладает радиофарфор (tg 10-3 ). Это достигается введением в состав шихты окиси бария. Радиофарфор занимает промежуточное положение между низкочастотными и высокочастотными диэлектриками.

Дальнейшим усовершенствованием радиофарфора является ультрафарфор, относящийся к группе материалов с большим содержанием (до 80%) Al2O Значение tg ультрафарфора меньше (tg (2-3)10-4) а больше, чем обычного электротехнического фарфора, что позволяет применять его как высокочастотную электроизоляционную керамику, кроме того, ультрафафор имеет повышенную по сравнению с обычным фарфором механическую прочность и теплопроводность. Исключительно высокими диэлектрическими и механическими свойствами обладает керамика на основе чистого глинозема Al2O3, получившая название алюминоксида. Этот материал отличается низкими диэлектрическими потерями в диапазоне радиочастот (tg (3-5)10-4) и при повышенных температурах обладает весьма высокой нагревостойкостью (до 1600С), а также большой механической прочностью и хорошей теплопроводностью, значение близко к 10. Керамика из алюминоксида используется в качестве вакуумплотных изоляторов в корпусах полупроводниковых приборов и подложек интегральных микросхем (поликор32ХС). Существенным преимуществом керамических подложек по сравнению со стеклянными и ситалловыми является их высокая теплопроводность. Это позволяет увеличить допустимую мощность рассеиваемую пленочными элементами. Среди неметаллических материалов наиболее высокой теплопроводностью обладает керамика на основе окиси бериллия (BeO) - брокерит. Теплопроводность ее в 200-250 раз превышает теплопроводность стекол и в 200 раз ситаллов при высоких значениях электрических параметров ( = 1016 Омм, tg 3 10-4). Берилливая керамика используется для подложек интегральных микросхем, в особо мощных приборах СВЧ и т.д. Недостатком этого материала является токсичность образующейся пыли, трудность механической обработки и высокая стоимость (в 15 раз дороже ситалла).

Для высокостабильных катушек индуктивности и высокочастотных конденсаторов большой реактивной мощности используется цельзиановая керамика, обладающая очень низким температурным коэффициентом линейного расширения (2 10-6 К-1), незначительным температурным коэффициентом диэлектрической проницаемости (610-5 К-1) и повышенной диэлектрической прочностью.

К о н д е н с а т о р н а я к е р а м и к а с повышенным ( = 10 - 230) значением диэлектрической проницаемости и значением tg 10-4 применяется для изготовления высокочастотных конденсаторов. Основными компонентами для изготовления высокочастотной конденсаторной керамики являются оксиды титана TiO2 (рутил), титанат кальция CaTiO3, титанат стронция. В области низких частот и повышенных температур рутиловая керамика в основном имеет ионно-релаксационную поляризацию, для которой характерны сильные температурные зависимости и высокие значения и tg, а знак ТКЕ - положительный. При высоких частотах главную роль играют электронная и ионная поляризация, при этом знак ТКЕ отрицателен и температурная зависимость tg слабо выражена.

Керамика на основе титанатов характеризуется пониженной электрической прочностью, подвержена электрохимическому старению под воздействием постоянного напряжения, имеет высокое отрицательное значение ТКЕ (от -1500 10-6 до -3000 10-6 К-1). Применяется для изготовления конденсаторов, к которым не предьявляются требования температурной стабильности емкости.

Для улучшения температурной стабильности в состав керамики добавляют цирконат кальция CaZrO2, лантанат алюминия LaAlO3, станнат кальция CaSnO2, которые образуют кристаллическую фазу с положительным значением ТКЕ. Изменяя соотношения между этими компонентами получают термостабильную керамику с ТКЕ от +3310-6 до -7510-6К-1. Диэлектрические потери этих материалов (tg=10-4- 10-3) во всем диапазоне частот от низких до сверхвысоких и поэтому они применяются для изготовления термокомпенсирующих, высокостабильных контурных, блокировочных и разделительных конденсаторов.

Конденсаторная керамика с высоким значением диэлектрической проницаемости (800) и tg = 0.002-0.025 применяется для изготовления низкочастотных конденсаторов. Основу низкочастотной конденсаторной керамики составляют титанат бария BaTiO3 и твердые растворы с сегнетоэлектрическими свойствами. Этот вид керамики характеризуется очень высоким значением диэлектрической проницаемости (до 10000) и ее зависимостью от напряжения, частоты, температуры, высоким значением tg, который на частотах выше 108 Гц уменьшается. Для конденсаторов используется сегнетоэлектрики со сглаженной температурной зависимостью распространенной на возможно более широкий температурный интервал со снижением максимума. Сегнетокерамические малогабаритные конденсаторы применяются как блокировочные, фильтровые, разделительные. Сегнетокерамика с резко выраженной зависимостью от напряженности поля применяется для изготовления нелинейных конденсаторов - варикондов.

Литература

  1. Суриков В.С. – Основы электродинамики – М. «Протон» - 2000 г.

  2. Карков И.С. – Физика элементарных частиц. – М. – 1999 г.

  3. Синджанов И.К. Электродинамика – М. 1998 г.

  4. Электротехнические материалы. Справочник / В.Б. Березин, Н.С. Прохоров, А.М. Хайкин. - М.: Энергоатомиздат, 1993. - 504с.

  5. Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы . - М.: Радио и связь, 1999. - 352с.

  6. Резисторы: Справочник / В.В. Дубровский, Д.М. Иванов и др.; Под общ. ред. И.И. Четверткова и В.М. Терехова. - М.: Радио и связь, 1997. - 352с.

  7. Справочник по электрическим конденсаторам / Под ред. И.И. Четверткова, В.Ф. Смирнова. - М.: Радио и связь, 1993. - 576с.

  8. Горячева Г.А., Добромыслов Е.Р. Конденсаторы. - М.: Радио и связь, 1994. - 88с.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее