124310 (Розрахунок торцевих ущільнень), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Розрахунок торцевих ущільнень", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "124310"

Текст 2 страницы из документа "124310"

Потужність тертя в ущільнювальному зазорі перетвориться в тепло, яке через контактні торцеві поверхні поширюється по ущільнювальним кільцям, створюючи нерівномірне температурне поле. Нагрів контактних поверхонь істотно впливає на режим тертя: по-перше, змінюються механічні та фізичні характеристики матеріалів тіл, що труться, та відокремлювального шару ущільнювальної рідини, по-друге, кільця піддаються температурним деформаціям, що порушують рівномірність контакту в парі тертя. Надмірний нагрів приводить до випаровування рідинного шару та різкого підвищення коефіцієнта тертя, температури та зношування або до термічного розтріскування кілець та втрати герметичності.

Рисунок 10 - Теплові потоки в ущільненні

Основними задачами теплового розрахунку є оцінки максимальних температур у парі тертя та температурних деформацій кілець для того, щоб у конструкції забезпечити такі умови, при яких температури та деформації не перевищували б допустимих значень.

Розрахунок теплового стану ґрунтується на рівняннях теплового балансу, причому з рівності сумарного потоку тепла, що виділяється при роботі ущільнення, та конвективного відведення від його корпусу
(рис. 10) визначається середня температура рідини в камері ущільнення. Рівняння теплового балансу має вигляд

Nc+N1+N2=Nk+Np, (16)

де тепловідведення від корпусу

(17)

а тепловідведення за рахунок витоків Q через ущільнення

(18)

Тут Sk - приведена площа корпусу ущільнення, від якої відбувається тепловіддача в зовнішнє середовище; - коефіцієнт тепловіддачі; с - питома теплоємність ущільнювальної рідини;

- приріст її температури за рахунок тепла, що відводиться;

t1 - температура рідини усередині корпусу ущільнення;

t2 - температура зовнішнього середовища. Якщо ущільнення забезпечене примусовим охолоджуванням, то в правій частині рівняння (16) необхідно додати відповідний тепловий потік. При нормальній роботі ущільнення витоки малі (біля 10 см3/год), тому їх впливом на тепловий стан, як правило, можна знехтувати

Оцінки температури в парі тертя ґрунтуються на рівнянні теплового балансу для ущільнювальних кілець та оточуючої їх ущільнювальної рідини та зовнішнього середовища (рис. 10)

(19)

де Na та Nb - теплові потоки, що відводяться від кільця А, що обертається, та опорного кільця В відповідно (див. рис. 10).

Температурне поле ущільнювальних кілець у загальному випадку описується нелінійним диференціальним рівнянням другого порядку в частині похідної параболічного типу. Якщо розглядати сталий тепловий процес та не враховувати слабку залежність коефіцієнта теплопровідності від температури, то температурне поле описується рівнянням Лапласа зі складними граничними умовами. Навіть у цьому випадку чисельне розв’язання задачі для кілець складної геометричної форми пов'язане із значними труднощами, тому ефективними є методи електричного моделювання теплового стану ущільнення.

Для орієнтовної оцінки температури на контактних торцевих поверхнях спростимо задачу, взявши як розрахункову модель кілець порожнисті циліндри (рис. 11 а) з рівномірно розподіленим на контактній поверхні тепловим потоком та постійними по довжині коефіцієнтами тепловіддачі циліндрових поверхонь, що омиваються ущільнювальною рідиною або зовнішнім середовищем. Слідуючи роботі [10], розглядатимемо усереднену по товщині циліндра температуру t(x). Тоді зміна температури уздовж кільця описується звичайним диференціальним рівнянням

(20)

при граничних умовах

де t2 - температура навколишнього середовища; - коефіцієнт теплопровідності матеріалу кільця;

- коефіцієнт теплопередачі від поверхні кільця, наприклад, від зовнішнього до навколишнього середовища; - периметр поверхні кільця, на якій відбувається тепловіддача; - площа поперечного перерізу кільця.

Рисунок 11 - До розрахунку теплового стану ущільнення:

а - модель окремого кільця; б – розрахункова схема аксіально рухомого (А) та опорного (В) кілець; в - зміна температури уздовж кілець

Розв’язання рівняння (20) дає такий закон зміни температури уздовж кільця:

ch ch , (21)

причому зниження температури по довжині обумовлене тепловіддачею в навколишнє середовище. Якщо підставити (21) в рівняння Фурье

,

то це дасть формулу відведеного за одиницю часу тепла:

th (22)

У реальних ущільненнях кільця на різних ділянках поверхні стикаються з різним середовищем або виконані складовими з матеріалів з різними коефіцієнтами теплопровідності, тому розрахункова схема може бути представлена (рис. 11 б) циліндрами з різними коефіцієнтами тепловіддачі та температурами середовища на окремих ділянках поверхні. При цьому повна тепловіддача кожного кільця складається з суми тепловіддач окремих ділянок:

(23)

де перший індекс належить до номеру кільця, а другий - характеризує навколишнє для даної ділянки середовище: 1 - ущільнювальна рідина з температурою t1, 2 - зовнішнє середовище (повітря) з температурою t2. Кожен доданок обчислюється за формулою (22) з урахуванням відповідних значень параметрів:

для ділянок, дотичних з ущільнювальною рідиною, із зовнішнім середовищем - ; t0 - температура в контакті кілець.

У виразах (23) не враховане тепловідведення через тильні торцеві поверхні. Г.В. Макаров [10] рекомендує для компенсації цього тепловідведення дещо збільшувати відповідні довжини:

Якщо підставити вирази (23) в рівняння теплового балансу (5.31), одержимо

Звідки (24)

де коефіцієнти В1 та В2 характеризують тепловіддачу в ущільнювальну рідину та навколишнє середовище відповідно:

Якщо врахувати, що тепловіддача від поверхонь, нерухомих відносно навколишнього середовища , мала в порівнянні з тепловіддачею поверхонь, що обертаються відносно ущільнювальної рідини та повітря , то , або

, (25)

Таким чином, за формулою (21) можна визначити зміну середньої по перерізу температури уздовж кільця, а за формулою (24) - середню температуру на контактних поверхнях торцевого ущільнення. Точніший розрахунок з урахуванням зміни температури по радіусу кілець виконаний у роботах [11, 12].

Виходячи з умов термоміцності контактних поверхонь та збереження рідинної плівки в зазорі при даному тиску, температуру в парі тертя обмежують значенням t*. При цьому для заданих умов тепловідведення з формули (24) можна визначити допустиму потужність тертя:

а з урахуванням (13) та (8) - допустиме значення показника експлуатаційного навантаження:

(26)

Коефіцієнти тепловіддачі циліндрових поверхонь, необхідні для оцінки теплового стану, виражаються через числа Нуссельта: для вільного циліндра та циліндра, що обертається усередині нерухомого циліндрового кожуха із зазором h0, відповідні коефіцієнти дорівнюють

(27)

де згідно з напівемпіричною формулою Дропкіна та Кармі

(28)

а для тепловідведення в зазор, коли вільною конвекцією можна знехтувати [11],

(29)

Критерії Грасгофа та Прандтля

(30)

виражаються через такі характеристики середовища:

- коефіцієнт об'ємного теплового розширення, 1/°С; - коефіцієнт теплопровідності, Вт/(м·°С); ср - питома теплоємність, Дж/(кг·°С);

v - кінематичний, м2/с, та - динамічний, Н/(м2·с), коефіцієнти в'язкості; g - прискорення сили тяжіння, м/с2; та t2 - середня температура поверхні, яка віддає тепло, та середня температура навколишнього середовища, °С. Коефіцієнт втрат на тертя циліндрової поверхні для Re2 > 1500 дорівнює

(31)

r - радіус циліндра, що обертається; h0 - радіальний зазор між циліндрами (рухомим та нерухомим). Критерій Грасгофа характеризує конвективний теплообмін за рахунок архімедових підйомних сил, які обумовлені відмінністю густин в окремих точках неізотермічного потоку через теплове розширення. Критерій Прандтля є відношенням турбулентного перенесення імпульсів за рахунок внутрішнього тертя до турбулентного перенесення тепла за рахунок теплопровідності. Для повітря за нормальних умов Рr = 0,74; для води при t = 0ºС Рr = 13,0. Із зростанням температури води до 250 °С (на лінії насичення) число Прандтля зменшується до Рr = 0,84; при подальшому зростанні температури число Прандтля знову збільшується [13].

Якщо на окружний потік в кільцевому зазорі накладається осьова течія з середньою по зазору швидкістю w, то інтенсивність тепловідведення зростає [14]:

. (32)

Комплекс що входить до виразу (29), з урахуванням формули (31) можна привести до вигляду

при цьому

(33)

Щоб зробити наочніше вплив окремих параметрів на тепловий стан кілець, перетворимо формули (25) з урахуванням (27):

(34)

(35)

де та - коефіцієнти теплопровідності ущільнювальної рідини та зовнішнього середовища (повітря). Відношення тепловіддачі в повітря та рідину, що входить у формулу (24), з урахуванням того, що набирає вигляду

Оскільки коефіцієнт теплопровідності та число Нуссельта Nu2, для повітря значно менші, ніж для рідини, у багатьох випадках відношенням В21 у формулі (24) можна знехтувати у порівнянні з одиницею і для оцінки температури в парі тертя користуватися спрощеною формулою

t0=t1+Nc/B1. (36)

Із формули (24) видно, що для зниження температури в парі тертя необхідно зменшувати втрати потужності на тертя та збільшувати сумарне тепловідведення за рахунок інтенсифікації перенесення тепла (збільшення чисел Нуссельта), збільшення коефіцієнтів теплопередачі та поперечних перетинів кілець. Довжина кілець входить лише в аргумент гіперболічного тангенса, граничним значенням якого є одиниця. Оскільки для ml = 1,6 th ml = 0,9217, тобто близький до граничного значення, то подальше збільшення аргументу за рахунок довжини кільця неефективне. Доцільність тих або інших способів зниження температури в зоні контакту повинна визначатися стосовно конкретних умов експлуатації.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее