123243 (Материаловедение), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Материаловедение", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "123243"

Текст 2 страницы из документа "123243"

6. МО. - линяя магнитного превращения (t°С=727°С). При нагреве ферромагнитный феррит превращается в парамагнитный а при охлаждении наоборот.

7. ES - линия сольвус. Эта линия характеризует изменения концентрации углерода в аустените при изменении температуры. С понижением температуры от 1147°С до 727°С предельная растворимость углерода в аустените понижается от 2,14% до 0,8%, следовательно при охлаждении из аустенита выделяется цементит, называемый вторичным (Ц ). (Цементит кристаляизующийся из жидкого раствора называется первичным). Линию ES еще называют линией вторичного цементита. Цементит вторичный образуется во всех сплавах содержащих углерода более 0,8%.

8. PQ - линия сольвус. Эта линия характеризует изменение концентрации углерода в феррите при изменении температуры. С понижением температуры от 727°С до комнатной предельная растворимость углерода в феррите понижается от 0,02% до 0,006%, следовательно, при охлаждении из феррита выделяется цементит, называемый третичным (Цш). Линию РQ еще называют линией третичного цементита. Во всех сплавах, содержащих углерода более 0,02% происходит образование Цш, но его пластинки нарастают на уже имеющиеся пластинки цементита и поэтому структурно неразличимы.

Проанализируем превращения, протекающие в сплаве, построив кривую охлаждения заданного сплава с применением правила фаз;

Правило фаз устанавливает количественную зависимость между числом степеней свободы (с), числом компонентов (к), образующих систему и числом фаз (Ф), находящихся в равновесии: С=К - Ф +1. Под числом степеней свободы (вариантностью системы) понимают возможность изменения температуры, давления и концентрации без изменения числа фаз, находящихся в равновесии. Следовательно, если в точке диаграммы С=0, то на кривой охлаждения - площадка, а если С=1, то на кривой охлаждения - изменение скорости (перегиб). Все сплавы изучаемой системы можно разделить на две группы: стали, чугуны. Стали содержат углерода 0,02% до 2,14, а чугуны от 2,14% до 6,67%.

По структуре стали различаются на доэвтектоидные (от 0,02%-0,8% С), эвтектоидные (0,8%С) и заэвтектоидные (0,8% - 2,14%С).

Чугуны по структуре различаются на доэвтектические (от 2,14%-4,3%С), эвтектические (4,3%С) и зазвтектические (4,3% - 6,67%С).

Рассмотрим кристаллизацию некоторого сплава с содержащего 0,3% С (доэвтэктоидная сталь):

Кристаллизация сплава начинается при температуре т.1 (C =1):

из жидкой фазы кристаллизуется феррит; состав которого по мере кристаллизации до температуры т.2 (C =0) изменяется по линии (1 -Н), а состав жидкой фазы по линии (1-B). При температуре т.2 в сплаве протекает перитектическое превращение с избытком жидкой фазы (Ж), т.к. требуемое количество

а в т.2 количестве

При охлаждении сплава в интервале температур от т.2 до т.З (С =1) происходит превращение оставшегося после перитектической реакции жидкости в аустенит. Ниже температуры т. З состоит из однородного аустенита. При охлаждении сплава в интервале температур от т.З до т.4 (С =1) превращений в нем не происходит. При температуре т.4 в сплаве начинается превращение аустенита в феррит, при этом состав оставшегося аустенита изменяется по линии (4-5) т.е. аустенит обогащается углеродом. Это превращение продолжается до t°С —727°С, т.е. до т.5’. При этой температуре весь аустенит, содержащий 0,8%°C переходит в перлит который вместе с выделившимся ранее ферритом образует конечную структуру стали (Ф+П).

По мере охлаждения сплава от температуры т.5 до комнатной из феррита, входящего в состав перлита будет выделяться Цш но он, как указывалось выше, будет структурно неразличим.

Кривая превращения при охлаждении

3. После закалки углеродистой стали была получена структура мартенсит + цементит. Нанесите на диаграмму состояния железо-цементит ординату (примерно) обрабатываемой стали, укажите температуру ее нагрева под закалку. Опишите превращения, которые произошли при нагреве и охлаждении стали.

Наносим на диаграмму состояния железо-цементит ординату (примерно) обрабатываемой стали, выбираем температуру равную 740 и содержание углерода 1,0. Подвергаем сталь неполной закалке. После закалки заэвтектоидная сталь Аустенит + цементит после охлаждения с критической скоростью в холодной воде (или воду с добавками соли или едкого натра) приобретает структуру, состоящую из мартенсита и цементита.

К/р № 2

Для некоторых деталей в самолето- и ракетостроении применяются титановые сплавы ВТЗ-1; ВТ14. Укажите их состав, назначьте режим термической обработки и обоснуйте его выбор. Опишите микроструктуру сплавов и причины их использования в данной области.

Титановые сплавы, сплавы на основе титана. Лёгкость, высокая прочность в интервале температур от криогенных (-250 °С) до умеренно высоких (300—600 °С) и отличная коррозионная стойкость обеспечивают Титановые сплавы хорошие перспективы применения в качестве конструкционных материалов во многих областях, в частности в авиации и других отраслях транспортного машиностроения.

Титановые сплавы получают путём легирования титана следующими элементами (числа в скобках — максимальная для промышленных сплавов концентрация легирующей добавки в % по массе): Al (8), V (16), Mo (30), Mn (8), Sn (13), Zr (10), Cr (10), Cu (3), Fe (5), W (5), Ni (32), Si (0,5); реже применяется легирование Nb (2) и Та (5). Как микродобавки применяются Pd (0,2) для повышения коррозионной стойкости и В (0,01) для измельчения зерна. Легирующие добавки имеют различную растворимость в a и b-Ti и изменяют температуру a/b-превращения. Алюминий, а также кислород и азот, предпочтительнее растворяющиеся в a-Ti, повышают эту температуру по мере увеличения их концентрации, что ведёт к расширению области существования a-модификации; такие элементы называются a-стабилизаторами. Sn и Zr хорошо растворяются в обеих аллотропических модификациях титана и очень мало влияют на температуру «a/b-превращения; они относятся к так называемым нейтральным упрочнителям. Все остальные добавки к промышленным Титановые сплавы предпочтительнее растворяются в b-Ti, являются b-стабилизаторами и снижают температуру полиморфного превращения титана. Их растворимость в a и b-модификациях титана меняется с температурой, что позволяет упрочнять сплавы, содержащие эти элементы, путём закалки и старения.

В связи с наличием полиморфизма титана и его способностью образовывать твёрдые растворы и химические соединения со многими элементами диаграммы состояния Титановые сплавы отличаются большим разнообразием. Однако в промышленных Титановые сплавы концентрация легирующих элементов, как правило, не выходит за пределы твёрдых растворов на основе a-Ti и b-Ti и металлидные фазы обычно не наблюдаются.

Табл. 1. — Химический состав промышленных титановых сплавов

Тип сплава

Марка сплава

Химический состав, % (остальное Ti)

Аl

V

Mo

Mn

Cr

Si

другие элементы

ВТ5 ВТ5-1

4,3—6,2 4,5—6,0

— —

— —

— —

— —

— —

— 2—3 Sn

Псевдо-

ОТ4-0 ОТ4-1 ОТ4 ВТ20 ВТ18

0,2—1,4 1,0—2,5 3,5—5,0 6,0—7,5 7,2—8,2

— — — 0,8—1,8 —

— — — 0,5—2,0 0,2—1,0

0,2—1,3 0,7—2,0 0,8—2,0 — —

— — — — —

— — — — 0,18—0,5

— — — 1,5—2,5 Zr 0,5—1,5 Nb 10—12 Zr

+

ВТ6С ВТ6 ВТ8 ВТ9 ВТ3-1 ВТ14 ВТ16 ВТ22

5,0—6,5 5,5—7,0 6,0—7,3 5,8—7,0 5,5—7,0 4,5—6,3 1,6—3,0 4,0—5,7

3,5—4,5 4,2—6,0 — — — 0,9—1,9 4,0—5,0 4,0—5,5

— — 2,8—3,8 2,8—3,8 2,0—3,0 2,5—3,8 4,5—5,5 4,5—5,0

— — — — — — — —

— — — — 1,0—2,5 — — 0,5—2,0

— — 0,20—0,40 0,20—0,36 0,15—0,40 — — —

— — — 0,8—2,5 Zr 0,2—0,7 Fe — — 0,5—1,5 Fe

ВТ15

2,3—3,6

6,8—8,0

9,5—11,0

1,0 Zr

Двухфазные a + b-сплавы — наиболее многочисленная группа промышленных Титановые сплавы. Эти сплавы отличаются более высокой технологической пластичностью, чем a-сплавы, и вместе с тем могут быть термически обработаны до очень высокой прочности (sb = 1500—1800 Мн/м2, или 150—180 кг/мм2); они могут обладать высокой жаропрочностью. К недостаткам двухфазных сплавов следует отнести несколько худшую свариваемость по сравнению со сплавами предыдущей группы, так как в зоне термического влияния возможно появление хрупких участков и образование трещин, для предотвращения чего требуется специальная термическая обработка после сварки.

Химический состав промышленных Титановые сплавы, выпускаемых приведён в табл. 1 (с разбивкой по типу структуры). По областям применения и виду полуфабрикатов можно приблизительно подразделить сплавы на следующие группы: свариваемые сплавы преимущественно для листов (ВТ5-1, ОТ4-0, ОТ4-1, ОТ4, ВТ20, ВТ6С, ВТ14, ВТ15); сплавы повышенной прочности для штамповок (ВТ5, ВТ6, ВТ14, ВТ16, ВТ22); жаропрочные сплавы для штамповок (ВТЗ-1, ВТ8, ВТ9, ВТ18). Механические свойства Титановые сплавы в отожжённом и термически упрочнённом состоянии приведены в табл. 2. Кроме обычной термической обработки, состоящей из закалки и старения, применяются различные режимы отжига, термомеханическая обработка (например, закалка из-под штампа с последующим старением), а также изотермическая деформация (медленная штамповка в штампах, нагретых до температуры деформации). В последнем случае достигаются очень однородные и высокие механические свойства. Титан и его сплавы могут подвергаться ковке, объёмной и листовой штамповке, прокатке, прессованию, волочению; из них можно получать те же полуфабрикаты, что и из др. конструкционных металлов, с учётом повышенной склонности титана к окислению при нагреве. Рекомендуется применять защитные эмалевые покрытия, которые при обработке давлением одновременно являются технологическими смазками. Термическую обработку следует проводить в печах с нейтральной атмосферой или в вакууме. Большинство промышленных Титановые сплавы имеют довольно узкий интервал кристаллизации и поэтому обладают удовлетворительными литейными свойствами. Для получения фасонных отливок предпочтительнее a-сплавы, которые, кроме хороших литейных свойств, позволяют заваривать дефекты. Наиболее употребительный литейный Титановые сплавы — сплав ВТ5Л. Для деталей повышенной прочности применяются сплавы ВТ6Л, ВТ9Л, ВТ20Л и др. В качестве материала для форм используются специальные керамические и графитовые смеси а также стальные кокили.

Табл.2. — Механические свойства титановых сплавов (типичные)

Марка сплава

Вид полуфа-бриката

Размеры (диаметр прутка или толщина листа, мм)

Режим термообра-ботки

Предел прочности, Мн/м2(0,1 кгс/ мм2)

Относи-тельное удлинение, %

ВТ5 ВТ5-1

Пруток Лист

10—60 0,8—10

Отжиг »

750—950 750—950

10 15—8*

ОТ4-0 ОТ4-1 ОТ4 ВТ20 ВТ18

Лист » » » Пруток

0,3—10 0,3—10 0,5—10 1,0—10 25—35

Отжиг » » » »

500—650 600—750 700—900 950—1150 950—1150

25—20 20—13 20—12 12—8 10

ВТ6С ВТ6 ВТ8 ВТ9 ВТ3-1 ВТ14 ВТ16 ВТ22

Лист Пруток » » » Лист Пруток »

1—10 10—60 10—60 10—60 10—60 0,6—10 4—16 25—60

Отжиг Закалка и старение Отжиг Закалка и старение Отжиг

Закалка и старение Отжиг Закалка и старение Отжиг Закалка и старение Отжиг Закалка и старение Отжиг »

850—1000 1050 920—1120 1100 1000—1200 750 (при 450 °C) 600 (при 500 °C) 1200 1050—1250 1200 1000—1200 750 (при 400 °C) 650 (при 450 °C) 1200 850—1070 1100—1200 830—950 1100—1250

12—8 8 10 6 9 6 9 6 8 6 8 6—4 16 10

ВТ15

Лист

1—4

Закалка Закалка и старение

850—1000 1300

12 4

Первое значение для минимальной толщины, второе — для максимальной.

В стадии промышленной разработки находятся высоколегированные сплавы Ti — Ni, представляющие собой по составу практически чистое химическое соединение никелид титана. Сплавы такого типа, получившие название «нитинол», обладают способностью при определённых условиях восстанавливать свою первоначальную форму после некоторой пластической деформации («эффект памяти»), что используется, например, в автоматическом реле противопожарных устройств и т. п.

К недостаткам Титановые сплавы следует отнести низкие антифрикционные свойства; это требует применения покрытий и смазок трущихся поверхностей.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее