122875 (Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "122875"

Текст 2 страницы из документа "122875"

Основными характеристиками пыли, которые следует учесть при усовершенствовании аэродинамических условий эксплуатации систем пылеулавливания в огнеупорном производстве, являются плотность, угол естественного откоса, слипаемость, смачиваемость, абразивность, дисперсность, химический состав, удельное электрическое сопротивление.

Плотность материала частиц пыли определяется пикнометрическим методом. Метод заключается в определении объема жидкости, вытесненной пылью, масса которой известна. Частное от деления массы пыли на вытесненный ею объем жидкости, представляет собой плотность материала частиц пыли. Насыпная плотность пыли определяется по массе известного объема пыли и предусматривает оценку двух величин насыпной плотности: свободно засыпанного и уплотненного слоя пыли. Важное значение при сборе и хранении уловленной пыли имеет угол естественного откоса.

Углом естественного откоса называется угол между горизонтальной поверхностью и образующей конуса насыпанного на нее порошкообразного материала. Различают собственно угол естественного, откоса (αдин ) и угол обрушения (αст). Первая величина относится к случаю сформирования откоса при падении частиц порошка на плоскость. Образование поверхности откоса соответствует состоянию динамического равновесия, поэтому αдин называют также динамическим углом естественного откоса. Углом обрушения называют угол, образующийся при обрушении слоя в результате удаления подпорной стенки. Его также называют углом естественного откоса αст.

Смачиваемость пыли определяется методом пленочной флотации. Метод основан на определении доли массы затонувших за определенное время частиц пыли, насыпанной тонким слоем на поверхность воды.

Метод определения слипаемости пыли основан на измерении усилия, необходимого для разрыва специально сформированного слоя пыли определенной площадки. Оценка абразивности пыли состоит в определении степени абразивного износа пластинки из исследуемой марки стали (пластинка располагается под углом 45° к пылевой струе). Испытания образца проводятся с помощью абразивметра центробежного типа.

Дисперсный состав пылей определяют различными способами – от ситового анализа до использования струйного сепаратора (импактора).

Ситовый анализ уловленной пыли основан на механическом разделении частиц по крупности путем просева через сита с различными размерами отверстий.

Анализ пыли струйным сепаратором (импактором) основан на инерционном осаждении взвешенных частиц на плоскую поверхность в результате резкого изменения направления движения запыленного потока при обтекании им плоской поверхности и на последующем определении массы частиц, осевших на эту поверхность.

В процессе пылеулавливания физико-механические свойства пыли, меняются.

Слипаемость пыли ухудшает аэродинамические свойства и надежность пылеуловителей за счет изменения геометрии рабочих сечений аппаратов. По существующей классификации пыль огнеупорного производства по степени слипаемости разделяют на 4 группы: I - неслипающаяся, II - слабослипающаяся; III - среднеслипающаяся; IV- сильнослипающаяся.

Классификация охватывает пыль 30 видов технологических операций огнеупорного производства и составлена на основе сведений о поведении пылей, полученных при эксплуатации систем пылеулавливания в огнеупорном производстве [1].

В табл. 2.1 приведены сведения об аутогезионной прочности пылей, отобранных из циклонов и электрофильтров.

Таблица 2.1

Аутогезионная прочность пыли, отобранной из циклонов и электрофильтров

Пыль

Место отбора пробы

Аутогезионная прочность слоя пыли, мг/см2

Группа слипаемости

Магнезитовая

Электрофильтр

  1. поле

  2. поле

3400

4960

III

III

Известковая

Циклон

408

II

Доломитовая

Электрофильтр

  1. поле

  2. поле

  3. поле

207

266

320

II

II

II

Шамотная

после электрофильтра

339

II

Из табл. 2.1 следует, что большинство пылей огнеупорного производства относится к слабо- и среднеслипающимся пылям. Повышенное значение аутогезионной прочности у магнезитовой пыли создает определенные трудности при эксплуатации систем пылеулавливания и требует особого внимания к аэродинамическим условиям эксплуатации пылеуловителей.

Почти все пыли огнеупорного производства склонны к гидратации: поэтому величины истинной и насыпной плотности резко различаются между собой.

Так, для шамотной, доломитовой, известняковой и магнезитовой пыли насыпная плотность составляет 900-1100 кг/м3, а истинная – 2120-2900 кг/м3.

В широких пределах, меняется и абразивность пылей. Поэтому при больших скоростях пылегазового потока (12-20 м/с) наибольшему износу за счет абразивности пыли подвержены внутренние стенки газоходов и аппаратов.

Установлено, что при улавливании магнезитовой пыли в циклонах НИИОГАЗ увеличение условной скорости до 7 м/с не приводит к износу аппарата, тогда как при улавливании доломитовой пыли скорость газа в циклонах не должна превышать 4 м/с.

Интенсивность абразивного износа зависит и от дисперсного состава пыли. Крупные частицы при повороте пылегазового потока в большей степени отклоняются от первоначального направления своего движения, чем мелкие, создавая условия для абразивного износа. При этом форма и геометрические параметры рабочего сечения, а следовательно, и аэродинамика потока меняются. Абразивность пыли создает трудности при пневмотранспорте уловленной пыли. Высокая концентрация пыли приводит к частым остановкам системы вследствие износа трубопроводов. Дисперсный состав пылей огнеупорного производства зависит от технологического процесса, режима работы, химических свойств, зернового состава сырья, организации аспирационных выбросов.

Грубые частицы пыли являются продуктом механического уноса сырьевой смеси и несгоревшего топлива.

Более тонкие пыли (высокодисперсные аэрозоли) образуются в результате уноса потоком частиц обжигаемого материала из активной зоны печи. Частицы размером свыше 100 мкм осаждаются в пылевой камере. Некоторая часть крупных частиц остается в боровах котлов-утилизаторов и подводящих газоходах.

Концентрация пыли в дымовых газах шахтных печей не превышает 12-15 г/нм3. Относительно небольшая запыленность газа позволяет установить за шахтными печами электрофильтр, требующий особого внимания к аэродинамике пылегазового потока

Химический состав пылей, образующихся при производстве огнеупоров, зависит от вида перерабатываемого сырья и сжигаемого топлива, как это показано в табл. 2.2 [1].

Таблица 2.2

Химический состав пылей, образующихся при производстве огнеупоров

Примечание. Числитель – при сжигании высокосернистого мазута, знаменатель – природного газа.

Данные, приведенные в табл. 2.2, были использованы авторами при выборе материалов для изготовления устройств, обеспечивающих выравнивание пылегазового потока.

Одним из существенных факторов при проектировании и эксплуатации газораспределительных устройств после электрофильтров является удельное электрическое сопротивление пыли. Следует отметить, что в интервале температур 130-180°С значения удельного электрического сопротивления почти всех пылей огнеупорного производства оказываются выше критического (1010-1011 ом·см), что позволяет рассчитывать на успешное применение газораспределительных устройств.

В таблице 2.3 приведены значения удельного электрического сопротивления пылей огнеупорного производства и соответствующие им значения влагосодержания и температуры.

Таблица 2.3

Удельное электрическое сопротивление пыли, образующихся при производстве огнеупорных изделий

Данные о содержании влаги в дымовых газах используют при выборе рабочих температур для газоходов, пылеулавливающих аппаратов и аэродинамических газораспределительных устройств.

При рабочей температуре, близкой к точке росы, происходит налипание пыли и коррозия стенок аппаратов, газоходов и вспомогательных устройств. Поэтому при проектировании и эксплуатации систем и аппаратов пылеулавливания наибольший интерес представляют сведения о точке росы газов, подлежащих очистке. Для пылей глины, известняка, доломита и магнезита точка росы пылегазовых потоков, как показано в [5], меняется в пределах от 39°С до 58°С.

Низкое значение точки росы газов позволяет организовать работу и соответствующих газораспределительных устройств при температурах ниже 100° С. Это имеет большое значение, так как снижение температуры заметно уменьшает объемы дымовых газов, подлежащих обеспыливанию.

3. Аэродинамические проблемы эксплуатации пылеуловителей

В производстве огнеупоров пылеулавливание является неотъемлемой частью технологического процесса, так как сырьевые материалы при их переработке находятся во взвешенном состоянии и необходимо максимальное извлечение их из газовой среды.

Поэтому должно быть обеспечено эффективное пылеулавливание не только по санитарным, но и по технологическим соображениям. Выбор схемы начинается с анализа исходных данных. Физико-химические свойства газов и пыли позволяют выбрать дополнительные устройства, тягодутьевое оборудование и конструкционные материалы для изготовления аппаратов и газораспределительных устройств.

После оценки гидравлического сопротивления и ожидаемой эффективности выбранных аппаратов формулируют дополнительные требования к газораспределительным устройствам.

В табл. 3.1 приведены ориентировочные сводные данные об эффективности различных пылеуловителей, используемых в огнеупорной промышленности.

Таблица 3.1

Ориентировочная эффективность различных пылеуловителей в огнеупорном производстве



При выборе аппаратов, указанных в табл. 3.1, учитывают и аутогезионные свойства пыли, чтобы исключить залипание рабочих элементов (рукавов, осадительных и коронирующих электродов), коммуникаций, дополнительного оборудования и транспортных приспособлений. Абразивные пыли приводят к истиранию рабочих поверхностей, что вызывает перераспределение скоростей пылегазового потока в рабочем сечении аппарата и резкое ухудшение аэродинамических условий разделения газовой гетерогенной системы с твердой дисперсной фазой, приводящее к снижению эффективности пылеуловителя.

Таким образом, разработка способов оптимизации аэродинамических условий эксплуатации систем пылеулавливания, что является предметом настоящей работы, является непременным условием обеспечения их эффективности.

С учетом современных тенденций [6] эта задача актуальна для фильтрующих и других аппаратов полочного типа с насыпными слоями зернистых (кусковых) тел, для аппаратов радиального типа с прохождением потока через боковую проницаемую поверхность, состоящую из слоя сыпучих или цементированных тел, ткани, волокон, различной набивки, сеток, решеток и т.п., для коллекторных систем с равномерной раздачей потока и, конечно, для электрофильтров с их исключительным разнообразием условий подвода пылегазового потока.

Поэтому особый интерес представляет анализ механизма растекания пылегазового потока по распределительным устройствам.

Во многих случаях выравнивание потока может быть достигнуто с помощью специальных направляющих устройств (лопатки, разделительные стенки и пр.)

Выравнивание потока может быть осуществлено также с помощью сопротивлений, рассредоточенных по сечению. В качестве таких сопротивлений используют различные виды решеток или сеток, насыпные слои кускового или сыпучего материала и др.

Квалифицируя зернистые слои как весьма перспективные способы пылеулавливания в огнеупорном производстве, рассмотрим схему протекания пылегазового потока через такие слои, как это показано на рис. 3.1 [7].

При толщине слоя с коэффициентом сопротивления, соответствующим оптимальному значению (рис. 3.1, а), пылегазовый поток, набегая узкой струей, постепенно растекается от сечения к сечению и за слоем устанавливается наиболее равномерное поле скоростей. С увеличением толщины слоя, а следовательно, и значения степень растекания перед фронтом слоя будет возрастать до тех пор, пока узкая струя, набегающая на слой, не станет растекаться по его фронту полностью (рис. 3.1, б). Это растекание происходит так, что периферийная часть струи устремляется к стенке канала почти параллельно фронту слоя. В результате в первых внутренних сечениях слоя профиль скорости становится неравномерным с повышенными значениями в центральной и пристенной областях (рис. 3.1, б и в). В следующих сечениях слоя характер профиля скорости будет меняться под влиянием многих факторов, одним из которых является пристенный эффект. При этом в зависимости от формы, шероховатости и других особенностей частиц (зёрен) слоя влияние стенки сказывается либо на очень узкую область сечения (0,5 - 5,0) d3, либо на широкую (несколько десятков диаметров зёрен). Наибольшая проницаемость слоя получается у самой стенки (ε ≈ 1).

Повышенная проницаемость слоя вблизи стенки аппарата обусловлена и частицами слоя [8]. Переменная по сечению пористость обусловливает переменное сопротивление и приводит к перетеканию части газа из центральной области к периферии. При этом скорости в центральной области уменьшаются, а в пристенной еще более возрастают, и на выходе из слоя устанавливается профиль скорости вогнутой формы с резко повышенной скоростью у стенки.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее