86350 (Пределы. Сравнение бесконечно малых величин)

2016-07-29СтудИзба

Описание файла

Документ из архива "Пределы. Сравнение бесконечно малых величин", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "контрольные работы и аттестации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86350"

Текст из документа "86350"

Контрольная работа

Дисциплина: Высшая математика

Тема: Пределы. Сравнение бесконечно малых величин

Содержание

1. Предел числовой последовательности

2. Предел функции

3. Второй замечательный предел

4. Сравнение бесконечно малых величин

Литература

1. Предел числовой последовательности

Решение многих математических и прикладных задач приводит к последовательности чисел, заданных определенным образом. Выясним некоторые их свойства.

Определение 1.1. Если каждому натуральному числу по какому-то закону поставлено в соответствие вещественное число , то множество чисел называется числовой последовательностью.

Исходя из определения 1, видно, что числовая последовательность всегда содержит бесконечное число элементов. Изучение различных числовых последовательностей показывает, что с ростом номера их члены ведут себя по-разному. Они могут неограниченно увеличиваться или уменьшаться, могут постоянно приближаться к какому-то числу или вообще не проявлять какой-либо закономерности.

Определение 1.2. Число называется пределом числовой последовательности , если для любого числа существует такой номер числовой последовательности , зависящий от , что для всех номеров числовой последовательности выполняется условие .

Последовательность, которая имеет предел, называется сходящейся. В этом случае пишут .

Очевидно, для выяснения вопроса о сходимости числовой последовательности необходимо иметь критерий, который был бы основан только на свойствах ее элементов.

Теорема 1.1. (теорема Коши о сходимости числовой последовательности). Для того, чтобы числовая последовательность была сходящейся, необходимо и достаточно, чтобы для любого числа существовал такой номер числовой последовательности , зависящий от , что для любых двух номеров числовой последовательности и , которые удовлетворяют условию и , было бы справедливо неравенство .

Доказательство. Необходимость. Дано, что числовая последовательность сходится, значит, в соответствии с определением 2, у нее существует предел . Выберем какое-то число . Тогда, по определению предела числовой последовательности, существует такой ее номер , что для всех номеров выполняется неравенство . Но так как произвольно, то будет выполняться и . Возьмем два каких-то номера последовательности и , тогда

.

Отсюда следует, что , то есть необходимость доказана.

Достаточность. Дано, что . Значит, существует такой номер , что для данного условия и . В частности, если , а , то или при условии, что . Это значит, что числовая последовательность для ограничена. Следовательно, по крайней мере, одна из ее подпоследовательностей должна сходиться. Пусть . Докажем, что сходится к также.

Возьмем произвольное . Тогда, согласно определению предела, существует такой номер , что для всех выполняется неравенство . С другой стороны, по условию дано, что у последовательности существует такой номер , что для всех и будет выполняться условие .

Выберем и зафиксируем некоторое . Тогда для всех получим:

.

Отсюда следует, что , что и требовалось доказать.

Определение 1.3. Числовая последовательность называется монотонно возрастающей, если выполняется неравенство , и монотонно убывающей, если .

Теорема 1.2. Любая монотонно возрастающая ограниченная сверху числовая последовательность имеет предел.

Аналогичная теорема есть и для монотонно убывающей числовой последовательности.

2. Предел функции

При исследовании графиков различных функций можно видеть, что при неограниченном стремлении аргумента функции к какой-то величине, то ли конечной, то ли бесконечной, сама функция также может принимать ряд значений, неограниченно приближающихся к некоторой величине. Следовательно, для функции также можно ввести понятие предела.

Определение 2.1. Число называется пределом функции в точке , если для любого существует такое число , что из условия следует, что .

Данное условие записывается в виде: . Отметим, что интервал длины , который содержит в себе точку , называется -окрестностью точки .

Аналогичным образом вводится понятие предела функции и при стремлении к . Так же как и в случае числовой последовательности, для функции существует теорема Коши, которая определяет существование у нее предела.

Теорема Коши о существовании предела. Для того чтобы функция , где , имела предел при , где , необходимо и достаточно, чтобы для любого существовало такое число , что из условия вытекало условие .

Доказательства теоремы приводить не будем. В качестве предела функции могут служить как конечные, так и бесконечные величины.

Геометрический смысл теоремы Коши заключается в следующем. Возьмем некоторое , для которого . Тогда, согласно теореме, . Представим данное неравенство следующим образом: . Иначе говоря, как только станет отличаться от меньше, чем на , сама функция окажется в полосе шириной , расположенной на линии .

Y


X

В приведенном определении предела и теореме Коши может стремиться к произвольным образом. Однако во многих случаях это стремление происходит с какой-то одной стороны. Для этого вводятся понятия односторонних пределов.

Определение 2.2. Если стремится к , оставаясь все время меньше его, и при этом стремится к , то это число называется пределом функции слева и обозначается .

Определение 2.3. Если стремится к , оставаясь все время больше его, и при этом стремится к , то это число называется пределом функции справа и обозначается .

Необходимо иметь в виду, что не всегда пределы слева и справа в точке равны между собой.

3. Второй замечательный предел

Рассмотрим числовую последовательность , где , С ростом основание степени уменьшается до единицы, а показатель растет до бесконечности, поэтому ничего конкретного о поведении сказать нельзя. Для вычисления воспользуемся выражением для бинома Ньютона:

. 1001\* MERGEFORMAT (..)

В нашем случае

.

Из полученного выражения следует, что с увеличением величина растет. Действительно, перейдем от к . Это приведет к тому, что число слагаемых возрастет на одно. Кроме того, величина множителей, заключенных в скобки, тоже возрастет, так как . Но если увеличивается число слагаемых и сами слагаемые растут, то . Значит, числовая последовательность монотонно возрастает.

Докажем теперь, что данная последовательность ограничена сверху. Заменим все скобки вида единицей. Так как , то

.

Кроме того , ,..., . Значит,

.

В правой части неравенства после цифры 2 стоит убывающая геометрическая прогрессия. Как известно, сумма первых членов такой прогрессии равна: . В нашем случае . С ростом величина будет, очевидно, стремится к единице. Значит, , то есть, ограничено сверху.

Итак, мы получили, что . Но так как монотонно возрастающая последовательность ограниченная сверху, то она имеет предел:

Можно доказать, что данный предел справедлив не только для натуральных чисел, но и для любых значений :

.

Полученное выражение и называется вторым замечательным пределом.

Число используется для введения натуральных логарифмов. Такие логарифмы обозначаются , при этом .

Следствие 3.1.

.

В частности, если , то .

Следствие 3.2.

.

В частности, если , то .

4. Сравнение бесконечно малых величин

Как следует из определения бесконечно малых величин, все они стремятся к нулю, но скорость этого стремления может быть различна. Поэтому все бесконечно малые величины можно сравнивать между собой.

Пусть даны две бесконечно малые величины и при , то есть , .

Определение 4.1. Функции и называются бесконечно малыми величинами одного порядка малости, если .

Определение 4.4. Функция называется бесконечно малой величиной более высокого порядка малости, чем , если .

Определение 4.3. Функция называется бесконечно малой величиной более низкого порядка малости, чем , если .

Тот факт, что , например, имеет более высокий порядок малости, чем , можно обозначить следующим образом: .

Определение 4.4. Функция называется бесконечно малой величиной го порядка малости относительно , если .

Определение 4.5. Функции и называются несравнимыми бесконечно малыми величинами, если не существует и не равен .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее