38 (1092623), страница 2
Текст из файла (страница 2)
Очевидно, что
Это следует, с одной стороны, непосредственно из выражений для
, а с другой стороны, из теоремы о взаимности перемещений, поскольку перемещения
и
возникают под действием одной и той же силы, равной единице.
Величины
, входящие в канонические уравнения, представляют собой перемещения в направлениях 1, 2,..., возникающие под действием заданных внешних сил в эквивалентной системе. Они определяются перемножением эпюры моментов заданных сил на соответствующие единичные эпюры.
Пример Раскрыть статическую неопределимость и построить эпюру изгибающих моментов для рамы, показанной на рис. 6.
Рис.6. Заданная расчетная схема
Рама три раза статически неопределима. Выбираем основную систему, отбрасывая левую заделку. Действие заделки заменяем двумя силами
,
и моментом
и определяем эквивалентную систему (рис. 7).
Рис.7. Динамика решения: от эквивалентной системы и силовой эпюры Р, включая эпюры моментов от единичных сил: 1, 2, 3 в точках приложения неизвестных
,
,
Канонические уравнения (6.2) принимают для рассматриваемой системы такой вид:
Основные перемещения в рассматриваемой раме определяются изгибом. Поэтому, пренебрегая сдвигом и сжатием стержней, строим эпюры изгибающих моментов от заданной силы P и от трех единичных силовых факторов (рис. 7).
Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ. Величина
определяется перемножением первой единичной эпюры самой на себя. Для каждого участка берется, следовательно, площадь эпюры и умножается на ординату этой же эпюры, проходящую через ее центр тяжести:
Заметим, что величины
при
всегда положительны, поскольку площади эпюр и ординаты имеют общий знак.
Определяем, далее, и остальные коэффициенты уравнений, перемножая эпюры с соответствующими номерами:
,
,
,
,
,
,
,
.
Подставляем найденные коэффициенты в канонические уравнения. После сокращений получаем:
,
,
Решая эти уравнения, находим:
,
,
Раскрытие статической неопределимости на этом заканчивается.
Рис.8. Суммарная эпюра изгибающих моментов.
Эпюра изгибающих моментов может быть получена наложением на эпюру моментов заданных сил трех единичных эпюр, увеличенных соответственно в
,
и
раза Суммарная эпюра изгибающих моментов представлена на рис. 8. Там же пунктиром показана форма изогнутой оси рамы.














