Главная » Все файлы » Просмотр файлов из архивов » Документы » ЛР3 - Гармоническая вибрация

ЛР3 - Гармоническая вибрация

2017-12-27СтудИзба

Описание файла

Документ из архива "ЛР3 - Гармоническая вибрация", который расположен в категории "". Всё это находится в предмете "основы автоматизированного проектирования (оап)" из 7 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "лабораторные работы", в предмете "основы автоматизированного проектирования (сапр)" в общих файлах.

Онлайн просмотр документа "ЛР3 - Гармоническая вибрация"

Текст из документа "ЛР3 - Гармоническая вибрация"

Лабораторная работа №3

ГАРМОНИЧЕСКАЯ ВИБРАЦИЯ

Ц
ель работы:
подвергнуть конструкцию, представленную на рис. 6 и состоящую из пластин с разными физическими свойствами, гармоническому анализу и получить: перемещения и ускорения на заданном интервале частот, форму колебаний на резонансной частоте.

Тип анализа

Структурный

Тип используемого конечного элемента

Оболочка (Shell)

Тип граничных условий

Жесткое защемление боковой грани и равномерно распределенная нагрузка

Возможности

Получение: резонансной частоты, формы колебаний на резонансной частоте и ускорения на заданном интервале частот.

Рис. 6

Порядок выполнения работы:

1. Определяем тип анализа:

MAIN MENU => PREFERENCES…=> STRUCTURAL=> ОК.

1. Выполняем следующую последовательность действий:

M.M. => PREFERENCES… => STRUCTURAL => OK. Таким образом, фильтруется все меню под структурный расчет.

2. Задаем свойства материалов и определяемся с типом элементов.

Выбираем тип элементов:

M .M. => PREPROCESSSOR => ELEMENT TYPE => ADD/EDIT/DELETE => ADD…=> STRUCTURAL SHELL ELASTUC 4 NODE 63 => OK => CLOSE. Сначала определяем толщины используемых пластин, для этого: M.M. => PREPROCESSOR => REAL CONSTANTS => ADD/EDIT/DELETE => ADD => ОК и в пункте SHELL THICKNESS AT NODE I TK(I) задаем толщину пластины равную 0,006 метрам и повторяем операцию ADD => ОК, задаем толщину второго материала равную 0,012 метрам. Далее задаём свойства материалов:

M.M. => PREPROCESSSOR => MATERIAL PROPS => MATERIAL MODELS. Затем, следуя цифрам на рис. 7, выполняем следующие действия:

А. Двойным нажатием мыши на указанные папки выполняем:

STRUCTURAL => LINEAR => ELASTIC => ISOTROPIC. В окне LINEAR ISOTROPIC PROPERTIES FOR MATERIAL NUMBER 1 задаем: модуль Юнга EX = 2е11 Па и коэффициент Пуассона PRXY = 0,27.

Б. Аналогично раскройте DENSITY и в поле плотность DENS задайте 7800 кг/м3.

В . Нажмите: MATERIAL => NEW MODEL… и уже для второго материала повторяем первые две операции, присвоив: EX = 1E+11 Па; PRXY = 0.23; DENS = 2700 кг/м3.

3. Строим деталь:

А. M.M. => PREPROCESSOR => MODELINGCREATE– => –AREASRECTANGLE => BY DIMENSIONS…, вводим координаты углов: X1 = -0.5, X2 = 0.5, Y1 = 0, Y2 = 1, нажимаем APPLY;

Б. Вводим координаты углов: X1 = -0.3, X2 = 0.3, Y1 = 0, Y2 = 0.5;

В. Для построения третьего прямоугольника повернем систему координат на угол равный 120° (рис. 9):

U.M. => WORK PLANE => OFFSET WP BY INCREMENTS…:

  • угол поворота устанавливаем равным 90° и нажимаем на кнопку поворота оси Х против часовой стрелки;

  • угол поворота устанавливаем равным 30° и нажимаем на кнопку поворота оси Х против часовой стрелки.

Теперь определяем координаты углов последнего прямоугольника:

M .M. => PREPROCESSOR => MODELING –CREATE– => –AREASRECTANGLE => BY DIMENSIONS… - X1 = -0.3, X2 = 0.3, Y1 = 0, Y2 = 0.5.

4. Соединяем в одно целое все полученные ранее прямоугольники, для этого:

M.M. => PREPROCESSOR =>–MODELINGOPERATE => –BOOLEANSPARTITION => AREAS. Выделяем курсором сначала второй прямоугольник (рис. 8), затем первый и нажимаем ОК. Теперь склеиваем все пластины: M.M. => PREPROCESSOR => –MODELINGOPERATE => –BOOLEANSGLUE => AREAS => PICK ALL. Таким образом, мы получаем единую конструкцию.

5. Назначаем каждому прямоугольнику свой материал:

M.M. => PREPROCESSOR =>–ATTRIBUTESDEFINE => ALL AREAS… PICKED AREAS+; нажимаем на первый прямоугольник (рис. 8) и нажмите ОК, в появившемся окне выставляем: MAT = 1, REAL = 1, TYPE = 1 SHELL63, ESYS = 0 и нажимаем ОК, затем нажимаем ALL AREAS PICKED AREAS+, потом нажимаем на второй и третий прямоугольники по очереди, нажимаем OK, затем в окне AREA ATTRIBUTES выставляем: MAT = 2, REAL = 2, TYPE = 1 SHELL63, ESYS = 0.

6. Разбиваем конструкцию на конечные элементы:

M.M. => PREPROCESSOR => –MESHINGSIZE CNTRLS => –MANUAL SIZE– –GLOBALSIZE., переменной SIZE присваиваем значение 0.1, потом нажимаем ОК, затем:

M.M. => PREPROCESSOR => –MESHINGMESH => –AREASFREE+ => PICK ALL.

7. Проводим расчет гармонической вибрации:

А. Назначаем тип анализа – гармонический: M.M. => SOLUTION => ANALYSIS TYPENEW ANALISIS… => HARMONIC.

Б. Закрепляем конструкцию, как показано на рисунке 9 под цифрой 1: MM=>SOLUTION=>APPLY=>DISPLACEMENT=> LINES… и выбираем закрепляемую линию, нажимаем ОК и в появившемся окне выбираем ALL DOF, то есть по всем осям перемещения равны нулю, и нажимаем ОК.

В. Нагружаем конструкцию, как показано на рис. 9 под цифрой 2:

M.M. => SOLUTION => APPLY => PRESSURE => ON AREAS, выделяем указанную поверхность, нажимаем ОК, и в окне переменной VALUE задаем значение распределенной нагрузки равное 1000 Н/м2.

Г . Проводим расчет:

M.M. => SOLUTION => –LOAD STEP OPTSTIME/FREQUENC => FREQ AND SUBSTPS… и выставляем значения: HARFRQ = 4…12 – интервал частот, а NSUBST = 50 – количество шагов, STEPPED. Нажимаем ОК. Затем нажимаем MAIN MENU => SOLUTION => CURRRENT LS => OK.

6. Просматриваем результаты расчета:

А. Выбираем последовательно три узла, для которых строим графики перемещений и ускорений в зависимости от частоты нагрузки:

M.M. => TIMEHIST POSTPRO => DEFINE VARIABLES …, то есть, определяем узлы, с которых будут считываться значения перемещений. Нажимаем на кнопку ADD… и выбираем NODAL DOF RESULT, нажимаем ОК. Выбираем последовательно три узла, рис. 10, подтверждаем выбор нажатием ОК. В появившемся окне выставляем: NVAR (номер переменной) равный 2, 3 и 4 DATA ITEM равный DOF SOLUTION и TRANSLATION UY, UZ и UZ (все результаты по оси Y и Z) соответственно, нажимаем ОК потом CLOSE.

Б . Строим графики:

M.M. => TIMEHIST POSTPRO => GRAPH VARIABLES… и в окне наберем: NVAR1 присвоим значение 2, NVAR2 присваиваем значение 3, NVAR3 присваиваем значение 4; и нажимаем ОК. В результате этого получаем график значений перемещений в зависимости от частот в определенных ранее узлах. Первый резонанс (всплеск значений перемещений) наблюдается для частоты равной 5,28 Гц.

В. Получаем, резонансную частоту равную 5,28 Гц, смотрим форму колебаний конструкции при данной частоте:

M.M. => GENERAL POSTPROC => –READ RESULTSBY TIME/FREQ…, в появившемся окне выставляем все как изображено на рис. 11 и нажимаем ОК. После этого: M.M. => GENERAL POSTPROC => PLOT RESULTS => –CONTOUR PLOTNODAL SOLU… и в появившемся окне переменной PLNSOL присваиваем значения STRESS, VON MISSES и потом ОК; а если в последнем окне переменной PLNSOL присваиваем значения DOF COLUTION, TRANSLATION USUM, получаем перемещения конструкции на резонансной частоте.

Г . Строим графики ускорений ранее выбранного одного узла. При гармоническом анализе ускорение представляет собой произведение перемещения на квадрат частоты. Т.е. для получения ускорений достаточно произвести простое перемножение:

M.M. => TIMEHIST POSTPRO => MATH OPERATIONS => Multiply, в появившемся окне выставляем: IR→5 – номер переменной в которой будет храниться результат перемножения – ускорение, IA→2 – номер переменной в которой хранятся значения перемещений, IBIC→1 – номер в которой хранятся значения частот ранее заданного интервала, → ОК. Далее выполняем визуализацию графика:

M.M. => TIMEHIST POSTPRO => GRAPH VARIABLES… и в появившемся окне переменной NVAR1 присваиваем значение 5, → ОК, получаем график ускорений в выбранном узле для заданного ранее диапазона частот.

Содержание отчета: краткие теоретические сведения, подробное описание всех шагов расчета с помощью ANSYS при расчете гармонической вибрации, рисунки воздействия вибрации на деталь с параметрами перемещения и ускорения на заданном интервале частот, форма колебаний на резонансной частоте. Выводы.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее