Реферат (Примеры получения нанокристаллических оксидов и гидроксидов металлов), страница 2

2017-12-26СтудИзба

Описание файла

Файл "Реферат" внутри архива находится в папке "Примеры получения нанокристаллических оксидов и гидроксидов металлов". Документ из архива "Примеры получения нанокристаллических оксидов и гидроксидов металлов", который расположен в категории "". Всё это находится в предмете "основы наноэлектроники и нанотехнологии" из 8 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "основы наноэлектроники и нанотехнологий" в общих файлах.

Онлайн просмотр документа "Реферат"

Текст 2 страницы из документа "Реферат"

В качестве рабочей среды используют расплавы галлия при темпе- ратуре 323 – 423 К, свинца при температуре 653 – 873 К или сплава сви- нец-висмут при температуре 453 – 873 К. Синтез проводится в два этапа. На первом этапе в расплаве рас- творяют металл М, химическое сродство которого к кислороду больше, чем металла, образующего расплав. Растворимость металла М в расплаве должна быть не меньше 0,1 масс.%. На втором этапе растворённый ме- талл М окисляют путем барботирования расплава водяным паром или га- зовой смесью (Н2О + Аr). Содержание водяных паров в окислительной га- зовой смеси составляет от 15 до 30 об.%. Ниже в качестве примера приве- дены реакции, происходящие в процессе окисления металла М в расплаве галлия:

2Ga(liq) + 3H2O(gas) = Ga2O3(solid) +3H2 ,

Ga2O3(solid) => Ga2O3(diSS),

yGa2O3(diss) = MxO3y(amorph) + 2i/Ga(liq).

В результате селективного окисления образуются аморфные высокодисперсные оксиды металлов. В частности, селективное окисление алюминия, растворённого в галлии в количестве 1 мас.%, приводит к образованию аэрогеля, т. е. вещества с объёмной макроструктурой. Аэрогель представляет собой хлопья аморфного высокопористого вещества, имеющего химический состав А12О3 . Н2О. Образование аэрогеля как единственного продукта селективного окисления происходит в реакционной зоне при температуре 343 – 348 К. Исследование микроструктуры показало, что вещество состоит из ориентированных в одном направлении волокон диаметром от 5 до 100 нм. Расстояние между отдельными волокнами составляет от 5 до 400 нм. Полученный наноматериал имеет пористость 96, 5-99, 5 об. % и удельную поверхность от 30 до 800 м 2 г -1 и может использоваться для теплоизоляции. Стабильность состава, структуры и свойств наноматериала сохраняется при длительном отжиге в интервале температур до 1000 К.

Селективное окисление индия, растворённого в свинце, позволило получить оксид индия In2O3 в чешуйчатом виде с размером макрочастиц до 5мм. Сканирующая электронная микроскопия показала, что чешуйки In2О3 состоят из иголок диаметром 50 – 100 нм с расстоянием между ними 80 – 200 нм. Число металлов, растворимость которых в расплавах галлия, свинца или сплава свинец-висмут составляет 0,1 мас.% и более, достаточно вели- ко. Это дает возможность с помощью селективного окисления системы Ga(liq)-M(dis) при температуре до 423 К получать высокодисперсные оксиды Na2O, А12О3, MgO и СаО. Селективное окисление в системах Pb(liq)-M(diss) и Pb/Bi(liq)-M(diss) при температуре до 873 К позволяет синтезировать наноразмерные оксиды TeO, NiO, GeO2, SnO2, In2O3, K2O, ZnO, Ga2O3, Na2O, MnO, Li2O, A12O3, BaO, SrO, MgO и СаО. Этот метод применим для получения в расплавах высокодисперсных нитридов, суль- фидов и галогенидов. В этом случае на расплав с растворённым металлом нужно воздействовать смесью инертного газа с азотом N2, сероводородом H2S или газообразными хлоридами галлия или свинца.

Осаждение на подложку

Осаждением на холодную или подогретую поверхность подложки получают плёнки и покрытия, т. е. непрерывные слои нанокристаллического материала. В этом способе, в отличие от газофазного синтеза, образование наночастиц происходит непосредственно на поверхности подложки, а не в объёме инертного газа вблизи охлажденной стенки. Благодаря получению компактного слоя нанокристаллического материала отпадает необходимость прессования. Осаждение на подложку может происходить из паров, плазмы или коллоидного раствора. При осаждении из паров металл испаряется в вакууме, в кислород- или азотсодержащей атмосфере, и пары металла или образовавшегося соединения (оксида, нитрида) конденсируются на подложке. Размер кристаллитов в плёнке можно регулировать изменением скорости испарения и температуры подложки. Чаще всего этим способом получают нанокристаллические плёнки металлов. Пленка из оксида циркония, легированного оксидом иттрия, со средним размером кристаллитов 10 – З0 нм была получена с помощью импульсного лазерного испарения металлов в пучке ионов кислорода и последующего осаждения оксидов на подложку с температурой 350 – 700 К. При осаждении из плазмы для поддержания электрического разряда используется инертный газ. Непрерывность и толщину плёнки, размеры кристаллитов в ней можно регулировать изменением давления газа и параметров разряда. В качестве источника металлических ионов при осаждении из плазмы используют металлические катоды, обеспечивающие высокую степень ионизации (от 30 до 100 %); кинетическая энергия ионов составляет от 10 до 200эВ, а скорость осаждения – до 3 мкм-мин.

С помощью осаждения из плазмы можно получать не просто плёнки нанометровой толщины, но плёнки, имеющие наноструктуру. Полученные таким образом тонкие гранулированные плёнки Со-А1-О обладают очень большим магнетосопротивлением несмотря на их большое электросопротивление. Это уникальное свойство было отнесено к гранулированной металлоксидной микроструктуре, содержащей металлические нано- частицы, внедренные в матрицу из неметаллического изолирующего оксида. Гигантское магнетосопротивление возникает при наличии супермагнетизма, поэтому размер магнитных частиц в плёнке должен быть очень мал. Для выяснения этого была изучена микроструктура плёнок с помощью электронной микроскопии высокого разрешения и малоуглового рассеяния рентгеновских лучей. Тонкие гранулированные плёнки сплавов системы Со-А1-О, осажденные на стеклянную подложку, были получены методом реактивного распыления в атмосфере Аr + О2 с использованием мишени из сплава Cо72Al28. Концентрация кислорода в плёнках из- менялась от 0 до 47ат.% с помощью контроля парциального давления О2 в газовой смеси для реактивного распыления. Исследование показало, что гигантское магнетосопротивление в плёнке появляется, когда частицы Со полностью окружены аморфным оксидом алюминия. Значение гигантского магнетосопротивления очень сильно меняется в зависимости от содержания кислорода в плёнке и является максимальным, когда среднее рас- стояние между металлическими наночастицами минимально.

Метод гидротермального синтеза

Метод гидротермального синтеза нанокристаллических порошков оксидов и гидрооксидов алюминия осуществляется сжиганием алюминия в водных средах с одновременным получением водорода и тепла. Для обеспечения полноты сжигания порошка алюминия в водных средах увеличивают скорость диффузии за счет активации порошков алюминия путем замены прочной оксидной пленки на полимерную.

Активация алюминия может осуществляться, например, по технологии предварительного измельчения выпускаемых промышленностью алюминиевых порошков в среде водорастворимого полимера, что обеспечивает замену оксидной пленки на полимерную, которая хорошо защищает поверхность алюминия от окисления кислородом воздуха. В водной среде полимерная пленка растворяется, и частицы алюминия вступают в реакцию с молекулами воды. При сверхкритических параметрах воды (Т = 374,2ºС, Р = 22,04 МПа) почти полностью разрушаются водородные связи и молекулы воды не проявляют взаимосвязанности. Коэффициенты диффузии очень велики, сопротивление массообмену практически отсутствует, так что обеспечиваются все условия для быстрого протекания реакции. Исследованные направления активации процесса окисления алюминия в водных средах могут быть реализованы как независимо, так и совместно. Например, химически пассивные даже в кипящей воде алюминиевые порошки будут окисляться с высокой скоростью в сверхкритической воде, а повышение реакционной активности алюминия путем замены диффузионно-непроницаемой оксидной пленки на водорастворимую полимерную позволит обеспечить достаточно высокую степень его окисления при докритических параметрах состояния воды. Однако, максимальная скорость и полнота окисления порошков алюминия обеспечиваются при сверхкритических параметрах состояния водной среды. 

В процессе гидротермального синтеза происходит превращение частиц алюминия размером до десяти микрон в нанокристаллические оксиды и гидрооксиды. Способ включает приготовление суспензии мелкодисперсного алюминия в воде, создание в реакторе давления насыщенных паров, распыление суспензии в реактор высокого давления, вывод из реактора гидроксида алюминия в приемное устройство, удаление из реактора водорода и его сбор. 

Способ позволяет менять форму и структуру частиц и получать материалы высокой чистоты (до 99,99% масс, содержания основного компонента). Отработаны технологические режимы процесса, позволяющие менять форму частиц от равноосной (в диапазоне размеров от десятков до сотен нанометров) до нитевидной с отношением длины к поперечнику 20…50 и удельной поверхностью 35…750 м2/г. Меняя условия, можно получать различные структуры материала: гидраргиллит, бемит, гамма и альфа оксид алюминия. 

Нанокристаллические частицы обладают повышенной поверхностной энергией и активны к синтезу новых материалов, спеканию, адсорбции и т.д. Учитывая их более высокую стоимость по сравнению с промышленными марками глинозема и электрокорунда, можно сказать, что существует свой рынок применения таких порошков, который в настоящее время изучен недостаточно.



Список литературы

  1. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии / А.И. Гусев. – М. : Физматлит, 2005. – 416 с

  2. И.Я.Миттова, Е.В.Томина, С.С. Лаврушина Наноматериалы: синтез нанокристаллических порошков и получение компактных нанокристаллических материалов. Учебное пособие, Воронеж, 2007 – 35с.

  3. Гусев А.И. Нанокристаллические материалы / А.И.Гусев, А.А. Ремпель. - М. : Физматлит, 2000. - 224 с.

  4. http://cryst.geol.msu.ru/literature/kurs/2010_01_kokarev.pdf

  5. http://promvest.info/ru/tehnologii-i-oborudovanie/gidrotermalnyiy-sintez-nanokristallicheskogo-gidroksida-alyuminiya-/

  6. http://www.rae.ru/fs/?article_id=9999756&op=show_article&section=content



Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее