86377 (Рамануджан и число π), страница 2

2016-08-02СтудИзба

Описание файла

Документ из архива "Рамануджан и число π", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86377"

Текст 2 страницы из документа "86377"

Связь между тригонометрическими функциями и алгебраическими выражениями станет понятней, если рассмотреть окружность единичного радиуса с центром в начале координат на декартовой плоскости х-у. Уравнение этой окружности (её площадь численно совпадает с π) имеет вид х2 + y2 = 1; оно получается по теореме Пифагора для прямоугольного треугольника с гипотенузой 1. Синус и косинус угла между положительной полуосью х и радиусом, проведённым в любую точку окружности, равны соответственно координатам y и x этой точки, а его тангенс равен y/x.

Однако для вычисления π гораздо важнее тот факт, что обратную тригонометрическую функцию можно разложить в ряд, члены которого выражаются через её производные. Сам Ньютон нашёл 15 знаков π, суммируя несколько первых членов ряда для арксинуса. Позднее он писал одному из коллег: «Мне стыдно сказать вам, до скольких знаков я выполнил эти вычисления, не занимаясь больше ничем».

В 1674 г. Лейбниц вывел формулу 1 – 1/3 + 1/5 – 1/7 + ... = π/4 (арктангенс единицы). (Общий ряд для арктангенса был открыт в 1671 г. шотландским математиком Джеймсом Грегори, хотя аналогичные выражения, по-видимому, были получены в Индии на несколько столетий раньше.) Погрешность этого приближения, определяемая как разность между суммой n членов ряда и точным значением π/4, приблизительно равна (n+1)-му члену. Так как знаменатель каждого следующего слагаемого возрастает лишь на два, то, чтобы получить приближение с точностью до двух знаков, приходится суммировать около 50 членов, с точностью до трех знаков – около 500 и т. д. Таким образом, этот ряд практически непригоден для нахождения более чем нескольких первых знаков π.

Спасла положение формула Джона Мэчина: π/4 = 4 arctg(1/5) – arctg(1/239). Поскольку ряд для арктангенса при заданном значении переменной сходится тем быстрее, чем меньше это значение, благодаря этой формуле вычисления сильно упростились. Пользуясь своей формулой и рядом для арктангенса, Мэчин в 1706 г. вычислил 100 знаков π. Его метод оказался столь мощным, что с начала XVIII в. и до самого недавнего времени все вычисления π с большим числом знаков были выполнены с помощью тех или иных вариантов этого метода.

ПРОИЗВЕДЕНИЕ ВАЛЛИСА (1665)

¥

π

2

=

2 × 2

1 × 3

×

4 × 4

3 × 5

×

6 × 6

5 × 7

×

8 × 8

7 × 9

× ... =

Õ

4n2

4n2 – 1

.

n=1

РЯД ГРЕГОРИ (1671)

¥

π

4

= 1 –

1

3

+

1

5

1

7

+ ... =

å

(–1)n

2n + 1

.

n=0

ФОРМУЛА МЭЧИНА (1706)

¥

π

4

= 4 arctg(1/5) – arctg(1/239), где arctg x =

å

(–1)n

x2n+1

2n + 1

.

n=0

РАМАНУДЖАН (1914)

¥

1

π

=

2Ö2

9 801

å

(4n)! [1103 + 26 390n]

(n!)4 3964n

.

n=0

ДЖ.БОРВЕЙН и П.БОРВЕЙН (1987)

¥

1

π

= 12

å

(–1)n(6n)! [212 175 710 912Ö61 + 1 657 145 277 365 + n(13 773 980 892 672Ö61 + 107 578 229 802 750)]

(n!)3 (3n)! [5 280(236 674 + 30 303Ö61]3n + 3/2

.

n=0

Члены математических последовательностей можно складывать и перемножать, иногда получая при этом ряды или бесконечные произведения, сходящиеся к π (делённому на константу) или к 1/π. Первые две последовательности, открытые математиками Джоном Валлисом и Джеймсом Грегори, широко известны, однако для вычислительных целей практически бесполезны. Для нахождения ста знаков π не хватило бы и ста лет работы суперкомпьютера, запрограммированного на сложение или умножение членов любой из этих последовательностей. Формула, открытая Джоном Мэчином, сделала вычисление π выполнимым, так как из анализа известен способ представлять арктангенс числа x в виде ряда, который сходится к значению арктангенса тем быстрее, чем меньше x. Все известные вычисления π с начала XVIII в. и до начала 70-х годов нашего века опирались на варианты формулы Мэчина. Сумма последовательности Рамануджана сходится к истинному значению 1/π гораздо быстрее: каждый очередной член последовательности добавляет, грубо говоря, восемь новых правильных цифр. Самая нижняя последовательность, найденная авторами, добавляет около 25 цифр с каждым новым членом. Первый член (соответствующий n = 0) дает число, совпадающее с π в 24 десятичных знаках.

Из вычислений, проведённых в XIX в., два следует упомянуть особо. В 1844 г. Иоганн Дазе нашёл 205 знаков π в течение нескольких месяцев, вычисляя значения трех арктангенсов и пользуясь формулой, аналогичной формуле Мэчина. Дазе был чудо-вычислителем: он мог примерно за 8 часов перемножать в уме стозначные числа. (Его, наверное, можно считать предтечей современного суперкомпьютера, по крайней мере по объему памяти.) В 1853 г. Уильям Шенкс обошел Дазе, опубликовав полученное им значение π с 607 знаками, хотя начиная с 528-го все остальные оказались неверными. Шенкс потратил на свой труд многие годы – это было рутинное, хотя и трудоёмкое применение формулы Мэчина. Своеобразным рекордом стало и то, что ошибка Шенкса была обнаружена только через 92 года при сравнении его значений с приближением π до 530 знаков, вычисленным Д. Ф. Фергюсоном с помощью механического калькулятора.

С появлением цифровых вычислительных машин попытки найти ещё больше десятичных знаков π возобновились, так как машина идеально приспособлена к долгому и упорному «перемалыванию» чисел. В июне 1949 г. Джон фон Нейман и его сотрудники применили один из первых цифровых компьютеров ENIAC. Машина выдала 2037 знаков за 70 часов. В 1957 г. Г. Э. Фелтон пытался вычислить 10 000 знаков π, но из-за ошибки компьютера только первые 7480 знаков оказались правильными. Рубеж в 10 000 знаков был достигнут годом позже Ф. Женюи с помощью компьютера IBM 704. В 1961 г. Дэниел Шенкс (по утверждению М. Гарднера, не имеющий отношения к Уильяму Шенксу. – Перев.) и Джон У. Ренч-младший вычислили 100 000 знаков π с помощью компьютера IBM 7090 менее чем за 9 часов. Отметка в миллион знаков была пройдена в 1973 г. Жаном Гийу и М. Буйе. Это заняло чуть меньше одного дня работы компьютера CDC 7600. (Вычисления Шенкса–Ренча и Гийу–Буйе были проделаны дважды при помощи двух разных выражений для π через арктангенсы. С учётом всех ошибок, допущенных в подобных вычислениях как человеком, так и машиной, только после такой проверки современные «охотники за знаками» считают рекорд официально установленным.) Главная причина, по которой стало возможным всё более точное вычисление π, состояла в увеличении быстродействия компьютеров. Однако вскоре выявились серьезные препятствия к дальнейшему росту точности. При традиционных способах выполнения на компьютере арифметических действий, если бы мы захотели удвоить число знаков, нам пришлось бы увеличить время вычисления по крайней мере вчетверо. Таким образом, даже при стократном увеличении быстродействия программе Гийу и Буйе для получения миллиардного знака π понадобилось бы четверть века машинного времени. В 70-е годы казалось, что такое вычисление практически невыполнимо.

Однако теперь эта задача осуществима, причём не только благодаря появлению «скоростных» компьютеров, но и благодаря применению новых методов умножения чисел. Решающим было и третье нововведение – итерационные алгоритмы, быстро сходящиеся к π. (Итерационный алгоритм можно реализовать в виде программы, которая повторно выполняет одни и те же арифметические действия, используя выход одного цикла в качестве входа для следующего.) Эти алгоритмы (некоторые из них построены нами) во многих отношениях предвосхищены Рамануджаном, хотя он и не знал ничего о программировании. Компьютеры не только позволили применить результаты Рамануджана, но и помогли разгадать их. Совершенное программное обеспечение, предусматривающее сложные алгебраические манипуляции, позволило уверенно двигаться по дороге, по которой в одиночку, лишенный помощи пробирался Рамануджан 75 лет назад.

МОДУЛЯРНЫЕ ФУНКЦИИ И ПРИБЛИЖЕНИЯ К p

Модулярная функция – это некоторая функция l(q), связанная алгебраическим соотношением, называемым модулярным уравнением, с той же функцией от той же переменной q, возведённой в некоторую целую степень p: l(qp). Эта степень p определяет «порядок» модулярного уравнения. Примером модулярной функции служит функция

¥

l(q) = 16q

Õ

(

1 + q2n

1 + q2n–1

)

8

.

n=1

Отвечающее ей модулярное уравнение 7-го порядка, связывающее l(q) и l(q7), имеет вид

8

Ö

l(q)l(q7)

+

8

Ö

[1 – l(q)][1 – l(q7)]

= 1.

Сингулярные решения модулярного уравнения – это такие решения, которые удовлетворяют некоторым дополнительным условиям. Один класс сингулярных решений получится, если вычислить последовательность значений

k(p) = Ö

l(ep)

для целых p. Эти значения обладают замечательным свойством: логарифмическое выражение

–2

Öp

ln

(

k(p)

4

)

имеет много первых десятичных знаков, общих с π, причем число их тем больше, чем больше значение p.

Рамануджан не имел себе равных в способности находить эти сингулярные значения. Одно из самых известных, когда p = 210, содержалось в его первом письме к Харди. Вот оно:

k(210) = (Ö2 – 1)2(2 – Ö3)(Ö7 – Ö6)2(8 – 3Ö7)(Ö10 – 3)2(Ö15 – Ö14)(4 – Ö15)2(6 – Ö35).

Если подставить его в логарифмическое выражение, получится число, которое совпадает с π в первых 20 десятичных знаках. Для сравнения, k(240) приводит к числу, которое совпадает с π в более чем 1 млн. знаков.

Пользуясь этим общим приёмом, Рамануджан построил много замечательных рядов для π, включая тот, что приведён на вкладке [2]. Тот же общий подход лежит в основе двухшагового итерационного алгоритма, показанного на вкладке [4]. Первый шаг каждой итерации (вычисление yn) соответствует нахождению одного из последовательности сингулярных значений путём решения модулярного уравнения подходящего порядка, второй шаг (вычисление an) отвечает взятию логарифма этого сингулярного значения.

Теоретическая информатика научила нас тому, что многие привычные алгоритмы, например способ умножения чисел, которому обучают в школе, весьма далеки от оптимальных. В информатике эффективность алгоритма измеряют его так называемой бит-сложностью: числом сложений и умножений отдельных цифр при выполнении алгоритма. Так, сложение двух n-значных чисел обычным способом имеет бит-сложность, которая растёт как n, a вот бит-сложность умножения двух n-значных чисел обычным способом растёт как n2. Таким образом, умножение при традиционных методах намного «труднее», чем сложение, т.е. поглощает намного больше времени.

Однако в 1971 г. А. Шёнхаге и Ф. Штрассен показали, что теоретически бит-сложность умножения двух чисел может быть лишь ненамного больше бит-сложности их сложения. Один из способов добиться этого потенциального уменьшения состоит в том, чтобы реализовать так называемые быстрые преобразования Фурье. Основанное на таком преобразовании умножение двух больших чисел позволяет организовать промежуточные действия над отдельными цифрами столь искусно, что дублирование исключается. Поскольку деление и извлечение корня можно свести к последовательности умножений, их бит-сложность тоже может стать ненамного большей, чем у сложения. В результате получится огромная экономия бит-сложности, а значит, и машинного времени. По этой причине в последнее время все попытки вычисления π основывались на тех или иных вариантах умножения с применением быстрых преобразований Фурье.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее