85303 (О физической значимости векторных потенциалов в классической электродинамике)

2016-08-02СтудИзба

Описание файла

Документ из архива "О физической значимости векторных потенциалов в классической электродинамике", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85303"

Текст из документа "85303"

О физической значимости векторных потенциалов в классической электродинамике

В.В. Сидоренков

Общепринято считать, что явления электромагнетизма физически полно представлены векторными электромагнитными полями, свойства которых исчерпывающе описываются системой электродинамических уравнений, сформулированных в окончательной форме Максвеллом [1]. При этом непосредственно следующие из уравнений Максвелла векторные потенциалы указанных полей как физическая реальность не рассматриваются, и им отводится роль вспомогательных математических функций, в ряде случаев существенно упрощающих вычисления. Такой взгляд на векторные потенциалы обусловлен взаимно неоднозначной связью полей и их потенциалов, не допускающей прямых измерений последних, и, что еще более важно, использование векторных потенциалов в рамках электромагнитных уравнений Максвелла не приводит в явном виде к дополнительным, не известным прежде следствиям.

Однако к настоящему времени исследованиями в области электродинамики, квантовой механики, сверхпроводимости достоверно установлено, что в фундаментальных уравнениях должны фигурировать не поля, а именно их потенциалы. В частности, эффекты Ааронова-Бома, Джозефсона, Мейснера реализуются в поле магнитного векторного потенциала [2], проявляющего себя тем самым вполне наблюдаемой физической величиной. Известно предложение о применении поля указанного вектор-потенциала в технологиях обработки разного рода материалов [3]. Отметим также сообщение [4], где на основе формального использования представлений о векторных потенциалах металлического проводника с током сделано утверждение о том, что в проводник при электропроводности вместе с потоком вектора электромагнитной энергии Пойнтинга поступают потоки чисто электрической и чисто магнитной энергии, момента электромагнитного импульса, возникающие в таких условиях в электромагнитном поле. Таким образом, налицо серьезная проблема, для решения которой необходимо должным образом проанализировать известные либо сформулировать новые физические представления о роли и месте векторных потенциалов в явлениях электромагнетизма.

В настоящей работе проведена модификация уравнений электромагнитного поля Максвелла для электрического и магнитного векторных потенциалов, и на основе анализа физического содержания полученных уравнений показано, что, наряду с традиционными полями в электродинамике, их векторные потенциалы являются полноправными физически значимыми полями, существенно расширяющими представления об электромагнитных полевых процессах.

Для решения поставленной задачи, прежде всего, рассмотрим саму систему электродинамических уравнений Максвелла [5] в дифференциальной форме:

(a) rot , (b) div , (c) rot , (d) div , (1)

включающую в себя материальные соотношения:

, , , (2)

описывающие отклик среды на наличие в ней электромагнитных полей. Здесь и - векторы напряженности электрического и магнитного полей, связанные посредством соотношений (2) с соответствующими векторами индукции и , - вектор плотности электрического тока, ρ - объемная плотность стороннего заряда, ε0 и μ0 - электрическая и магнитная постоянные, σ, ε и μ - удельная электрическая проводимость и относительные диэлектрическая и магнитная проницаемость среды, соответственно. Принципиальная особенность этих динамических релятивистски инвариантных уравнений (1) состоит в том, что в их структуре заложена отражающая обобщение опытных данных основная аксиома классической электродинамики - неразрывное единство переменных во времени электрического и магнитного полей.

Фундаментальным следствием уравнений Максвелла является вывод о том, что описываемое ими электромагнитное поле перемещается в пространстве в виде волн, скорость которых определяется лишь электрическими и магнитными параметрами среды, заполняющей это пространство (например, в отсутствие поглощения ). Совместное решение уравнений системы (1) позволяет также ответить на вопрос, что переносят эти волны и получить аналитическую формулировку закона сохранения электромагнитной энергии:

rot rot =div = , (3)

согласно которому поток электромагнитной энергии компенсирует в данной точке среды джоулевы (тепловые) потери при электропроводности и изменяет электрическую и магнитную энергию. При этом характеризующий энергетику данного факта вектор Пойнтинга плотности потока электромагнитной энергии , связанный с вектором плотности электромагнитного импульса 2, отличен от нуля только там, где одновременно присутствуют электрическое и магнитное поля, векторы и которых неколлинеарны.

Таким образом, в рамках уравнений (1) в принципе невозможно представить раздельное существование чисто электрических либо магнитных волн, переносящих только электрическую или магнитную энергию. Кроме того, далеко не ясен вопрос о физической реализации момента импульса электромагнитного поля, соответственно, переносящих его волн, и каким образом это явление соотносится с уравнениями Максвелла [6]. Чтобы аргументированно прояснить сложившуюся ситуацию, рассмотрим далее вопрос о возможности модификации уравнений электромагнитного поля (1) в виде альтернативных им уравнений для электрического и магнитного векторных потенциалов.

Понятие векторного потенциала следует из очевидного положения о том, что дивергенция ротора любого вектора тождественно равна нулю. Поэтому магнитный векторный потенциал определится посредством соотношения div = 0 системы электромагнитных уравнений Максвелла (1), а электрический - соотношением div = ρ этой системы при , описывающим поляризацию локально электронейтральной среды:

(а) rot , (b) rot . (4)

Однозначность функций векторного потенциала, то есть чисто вихревой характер такого поля, обеспечивается условием кулоновской калибровки: div = 0.

Тогда подстановка соотношения для магнитного векторного потенциала (4a) в уравнение вихря электрической напряженности системы (1a) приводит к известной формуле [5] связи поля вектора указанной напряженности с магнитным вектор-потенциалом:

, (5)

описывающей закон электромагнитной индукции Фарадея. Отметим, что здесь не рассматривается электрический скалярный потенциал, формально следующий из таких рассуждений: grad φe.

Аналогичная подстановка соотношения для электрического векторного потенциала (4b) в уравнение вихря магнитной напряженности системы (1c) с учетом соотношений (2) позволяет получить формулу связи поля этой напряженности с электрическим вектор-потенциалом:

, (6)

где τрел= εε0 /σ - постоянная времени релаксации электрического заряда в среде за счет электропроводности.

Теперь можно убедиться, что результаты проведенных рассуждений действительно позволяют предложить альтернативу традиционной системе электромагнитных уравнений Максвелла (1). Используя формулы (4a) и (4b) связи полей индукции и их векторных потенциалов, имеем при подстановке в них соотношений (5) и (6) систему динамических уравнений относительно полей только электрического и магнитного векторных потенциалов:

(a) rot , (b) div , (7)

(c) rot , (d) div .

Неординарность уравнений системы (7) вполне очевидна, поскольку в каждом одном роторном уравнении поля векторного потенциала или содержится информация о свойствах обоих роторных уравнений электромагнитных полей и системы (1). Так, например, если взять ротор от электрического роторного уравнения (7a), то после подстановки в его левую часть соотношения (4b), а в правую (4a) получается также “электрическое” роторное уравнение (1a). Теперь, если взять производную по времени ( t) от уравнения (7a) и использовать подстановки соотношений (5) и (6), то оно преобразуется в “магнитное” роторное уравнение (1c). Аналогичные действия с магнитным роторным уравнением (7c) дают в итоге роторные уравнения (1c) и (1а). Дивергентные уравнения системы (7) посредством дифференцирования их по времени преобразуются в соответствующие уравнения системы (1) при ρ = 0.

Об исключительности уравнений векторных потенциалов говорит и тот факт, что дифференцирование по времени только магнитных уравнений системы (7) преобразует ее с учетом вышеизложенного в новую систему уравнений относительно полей электрической напряженности и ее вектор-потенциала:

(a) rot , (b) div , (8)

(c) rot , (d) div .

Соответственно дифференцирование по времени пары уравнений электрического векторного потенциала в системе (7) преобразует ее в другую новую систему уравнений теперь уже относительно полей магнитной напряженности и ее вектор-потенциала:

(a) rot , (b) div , (9)

(c) rot , (d) div .

Сделаем общее для всех систем замечание о дивергентных уравнениях. Как уже говорилось, уравнение div = 0 являются калибровкой, обеспечивающей однозначность функции векторного потенциала , поэтому, согласно симметрии уравнений в рассматриваемых системах, другие дивергентные уравнения: (1b) при , (1d), (8b) и (9b) математически также следует считать соответствующими калибровками для функций вихревых полей и .

С точки зрения эффективности анализа физического содержания всех представленных уравнений укажем на явную предпочтительность использования в электродинамике системы единиц физических величин СИ в сравнении с абсолютной системой единиц СГС. Размерность в системе СИ множителя 0 в материальных соотношениях (2) для действительно оправдана, поскольку тем самым объединяются физически различные электрические величины: линейный (силовой) вектор напряженности и потоковый вектор смещения . Аналогично, в другом соотношении (2) размерная константа 0 связывает линейные и потоковые векторные величины: . Напротив, в гауссовой системе единиц безразмерные коэффициенты 0 = 1 и 0 = 1 делают векторы и , и сущностно тождественными, что обедняет физическое содержание соотношений электромагнетизма, оголяя в них формализм “математики”. Физические свойства указанных полей, акцентируемые системой СИ, наиболее полно отражены в электродинамических уравнениях Максвелла (1), где, и Максвелл это особо подчеркивал [1], описываются вихри именно линейных векторов и , а дивергенция потоковых и . Кстати, векторные потенциалы и по определению являются линейными векторами, а векторы отклика среды на их воздействие и - потоковыми.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее