85152 (Физические основы теории нетеплового действия электродинамических полей в матери-альных средах)

2016-08-02СтудИзба

Описание файла

Документ из архива "Физические основы теории нетеплового действия электродинамических полей в матери-альных средах", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85152"

Текст из документа "85152"

Физические основы теории нетеплового действия электродинамических полей в материальных средах

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

Введение.

Приоритет прямого доказательства нетеплового действия электромагнитных (ЭМ) полей на физико-механические свойства материалов принадлежит Вертгейму [1], где по удлинению проволочных образцов различных металлов при постоянной внешней механической нагрузке в условиях пропускания электрического тока либо только при термическом воздействии для одной и той же температуры образца определялись соответственно модули упругости G1 и G2 исследуемого материала. Наличие разности ΔG = |G1 – G2| служило доказательством дополнительного нетеплового действия электрического тока на величину модуля упругости металла. Однако в то время этот эффект не был актуален, а потому не востребован, и лишь спустя 125 лет указанное явление было переоткрыто Троицким [2]. Теперь феномен нетеплового действия ЭМ полей на свойства материальных сред не только всесторонне изучается, но и нашел успешное применение в технологиях обработки металлов и других материалов [3, 4].

Тем не менее, надо признать, что при значительных успехах в приложениях научное развитие этого направления исследований всегда сдерживалось концептуально, поскольку строгой электродинамической теории, последовательно описывающей нетепловое действие ЭМ полей на материальные среды, попросту не существовало. Объективность такого заявления иллюстрирует, в частности, многолетняя дискуссия в научной печати о природе электропластического эффекта (ЭПЭ) в металлах (например, в [3, 4]). Парадокс в том, что одни аргументированно на основе анализа уравнений ЭМ поля показывают, что ЭПЭ электродинамически обусловлен проявлением квадратичных по току закона Джоуля-Ленца и пинч-эффекта, а другие достоверно в многочисленных экспериментах убеждаются в нетепловой (линейной по току) природе ЭПЭ.

Основы электродинамики нетепловых процессов в материальных средах.

Попытаемся разобраться в этой далеко непростой ситуации, для чего рассмотрим систему электродинамических уравнений Максвелла - уравнения ЭМ поля:

(a) , (b)

, (c)

, (d)

. (1) Здесь компоненты ЭМ поля векторы электрической

и магнитной

напряженности связаны с соответствующими векторами индукции

и

и плотности электрического тока

посредством материальных соотношений:

,

,

,

описывающих отклик среды на воздействие ЭМ поля; - объемная плотность стороннего электрического заряда,

и

- электрическая и магнитная постоянные,

,

и

- удельная электрическая проводимость, относительные диэлектрическая и магнитная проницаемость среды, соответственно.

Фундаментальным следствием данных уравнений является тот факт, что описываемое ими поле распространяется в пространстве в виде ЭМ волн, переносящих поток ЭМ энергии , аналитическая формулировка закона сохранения которой также следует из этих уравнений:

. (2)

Видно, что в данной точке среды диссипативные процессы электропроводности и изменения электрической и магнитной энергий порождаются потоком извне вектора Пойнтинга ЭМ энергии , и наоборот.

Однако, согласно уравнениям системы (1), в принципе невозможны электродинамические потоки, переносящие только электрическую либо магнитную энергии, хотя процессы соответствующей поляризации сред существуют раздельно и энергетически независимы. Поэтому продолжим обсуждение уравнений (1) с целью их модификации для поля ЭМ векторного потенциала, поскольку новые уравнения позволят последовательно описать процессы нетеплового действия электродинамических полей в материальных средах: электрическую и магнитную поляризацию среды, передачу ей момента ЭМ импульса.

Сами исходные соотношения первичной взаимосвязи компонент ЭМ поля и поля ЭМ векторного потенциала с электрической и магнитной

компонентами получим непосредственно из уравнений (1):

(a) , (b)

, (c)

, (d)

. (3)

Здесь соотношение (3a) вводится с помощью уравнения (1d), так как дивергенция ротора произвольного векторного поля тождественно равна нулю. Аналогично (3b) следует из уравнения (1b) при = 0, справедливого для сред с локальной электронейтральностью. Далее подстановка (3a) в (1а) дает (3c), а подстановка (3b) в (1c) с учетом закона Ома электропроводности приводит к (3d), где

- постоянная времени релаксации электрического заряда в среде за счет ее электропроводности. Как представляется в [5, 6], исходные соотношения (3) фундаментальны и перспективны с точки зрения физической интерпретации поля ЭМ векторного потенциала, выяснения его роли и места в явлениях электромагнетизма. Покажем это.

Главное фундаментальное следствие соотношений (3) состоит в том, что подстановки (3c) в (3b) и (3d) в (3a) приводят к системе электродинамических уравнений поля ЭМ векторного потенциала с электрической и магнитной

компонентами, структурно полностью аналогичной системе уравнений (1):

(a) rot , (b) div

, (4)

(c) rot , (d) div

.

Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием калибровки посредством дивергентных уравнений (4b) и (4d), которые также представляют собой для уравнений (4a) и (4c) начальные условия в математической задаче Коши, что делает систему (4) замкнутой.

Подстановки соотношения (3с) в продифференцированное по времени ( ) соотношение (3a) и аналогично (3d) в (3b) дают систему электродинамических уравнений ЭМ поля (1) при

= 0, где уравнения (1d) и (1b) получаются взятием дивергенции от (3a) и (3b). Уравнения (1а) и (1с) можно также получить, если взять ротор от (3с) и (3d) при подстановке в них (3а) и (3b).

Применение операции ротора к (3c) и подстановка в него (3a) с учетом (3d) преобразует систему (3) в другую систему теперь уже уравнений электрического поля с компонентами напряженности и вектор-потенциала

:

(a) rot , (b) div

, (5)

(c) rot , (d) div

.

Соответственно взятие ротора от соотношения (3d) и подстановка в него (3b) с учетом (3c) снова преобразует систему соотношений (3) в еще одну систему уравнений классической электродинамики систему уравнений магнитного поля с компонентами напряженности и векторного потенциала

:

(a) rot , (b) div

, (6)

(c) rot , (d) div

.

Как видим, соотношения (3) функциональной первичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала действительно фундаментальны.

Согласно структуре уравнений в представленных системах, существуют волновые уравнения не только для компонент ЭМ поля и

, но и для компонент поля ЭМ векторного потенциала

и

в парных комбинациях этих четырех волновых уравнений в зависимости от системы. Возникает физически очевидный и принципиальный вопрос: какие это волны, и что они переносят? Таким образом, необходимо выяснить физическое содержание новых систем электродинамических уравнений.

Подобно вектору Пойнтинга плотности потока ЭМ энергии полей системы (1) рассмотрим другой потоковый вектор

, который, судя по размерности, определяет электрическую энергию, приходящуюся на единицу площади поверхности. Для аргументированного обоснования возможности существования такого вектора и установления его статуса воспользуемся уравнениями системы (5) и с помощью стандартных вычислений (см. (2)) получим

(7)

- соотношение, описывающее энергетику реализации процесса электрической поляризации среды в данной точке. Как видим, уравнения электрического поля системы (5) описывают чисто электрические явления, в том числе, поперечные электрические волны, переносящие поток электрической энергии.

Аналогичным образом можно ввести еще один потоковый вектор , размерность которого соответствует поверхностной плотности магнитной энергии в соотношении, описывающем энергетику процесса намагничивания среды в данной точке:

. (8)

Итак, уравнения магнитного поля системы (6) рассматривают чисто магнитные явления, устанавливают реальность поперечных магнитных волн, переносящих поток магнитной энергии.

Полученные соотношения баланса (7) и (8) описывают энергетику условий реализации обычной электрической или магнитной поляризации среды (первое слагаемое правой части соотношений) посредством переноса извне в данную точку потоком вектора или

соответствующей энергии. Эти соотношения также устанавливают наличие эффектов динамической поляризации вещества (в частности, проводящих сред) за счет действия переменных во времени электрической или магнитной компонент поля ЭМ векторного потенциала. Сведения о таких динамических эффектах позволяют взглянуть по-новому на физическую сущность электродинамики процессов ЭПЭ [3, 4], понять механизм их резкой интенсификации при импульсном режиме действия ЭМ полей или электрического тока. Надо сказать, что явления динамической поляризации уже имеют прямое экспериментальное воплощение: это эффекты электродинамической индукции в металлах [7] и динамического намагничивания в ферритах и магнитоупорядоченных металлах [8].

Подобно соотношениям (7) и (8) из уравнений в системе (4) следует соотношение баланса передачи в данную точку момента импульса, реализуемого полем ЭМ векторного потенциала посредством потокового вектора :

. (9)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее